令和3年度(2021年度) オゾン層等の監視結果に関する 年 次 報 告 書

令和4年(2022年)12月

環 境 省

米国航空宇宙局(NASA)の衛星観測データを基に気象庁で作成

米国航空宇宙局(NASA)の衛星観測データを基に気象庁で作成 図 II 北半球における3月の月平均オゾン全量分布(1979年及び2021年) (出典)気象庁提供

図 III 世界のオゾン全量偏差(%)の年平均分布図(2021年) ※「偏差」は1997~2006年の平均値からのずれとして算出。p.18 図 1-3-2(下)として掲載 (出典)気象庁 オゾン層・紫外線の年のまとめ(2021年)

図 IV 国内外の機関で観測された CFC-11、CFC-12 及び CFC-113 の濃度変化

※環境省の観測結果 (p.98 図 2-3-1)、国立環境研究所の観測結果 (p.104 図 2-3-9)、気象庁の観測結果 (p.105 図 2-3-10)、東京大学の観測結果 (p.108 図 2-3-11)の他、WMO 科学評価パネル報告書で紹介された観測結果 (AGAGE、NOAA/ESRL、UCI)を取りまとめたもの。

図 V 日本付近の日最大 UV インデックスの月別分布 左図:1997~2008 年の平均値、右図:2021 年値の平均(1997~2008 年)値からの偏差 ※UV インデックス情報については p.150 参照 (出典)気象庁提供

はじめに

1974年、米国カリフォルニア大学ローランド教授とモリーナ博士によって、人工化学物質で あるクロロフルオロカーボン(CFC)が成層圏のオゾン層を破壊することが初めて指摘され、 人や生態系に影響が生じうるとの警鐘が鳴らされました。これを契機として、オゾン層保護の ための取組が進められるようになりました。1985年には、「オゾン層保護のためのウィーン条 約」が、1987年には「オゾン層を破壊する物質に関するモントリオール議定書」が採択されま した。このモントリオール議定書に基づき、主要なオゾン層破壊物質の生産量・消費量が明確 な期限を定めて削減されてきました。さらに 2016年には、高い温室効果を有するハイドロフ ルオロカーボン(HFC)を、段階的削減の対象物質に追加するキガリ改正が採択されました。 改正議定書は 2019年1月1日に発効されています。

また、近年では気候変動を背景として、世界各地で記録的な熱波や寒波、大雨等の深刻な気 象災害が発生するなど、甚大な被害が生じています。これら気候変動問題に対処するため、我 が国は、2050年までのカーボンニュートラルを宣言し、2021年4月には、2030年度に温室効 果ガスを2013年度から46%削減することを目指していくことを表明しました。この新たな削 減目標も踏まえて、2021年10月、「地球温暖化対策計画」を改定し、その中で、代替フロンに ついても55%減の水準(約14.5百万 t-CO2)にすることを示しています。フロン類対策はオ ゾン層保護だけでなく気候変動対策としても、重要性が非常に高まっています。

我が国のオゾン層保護・気候変動対策に関する取組としては、「フロン類の使用の合理化及び 管理の適正化に関する法律(フロン排出抑制法)」に基づき、フロン類の上流から下流までのラ イフサイクル全般にわたる対策を推進するとともに、「特定物質の規制等によるオゾン層の保護 に関する法律(オゾン層保護法)」に基づき、CFC、ハロン、ハイドロクロロフルオロカーボン (HCFC)などの特定物質(オゾン層破壊物質)の製造数量の規制、使用事業者に対する排出 抑制・使用合理化指針の公表等を行っています。キガリ改正についても、2018年7月にオゾン 層保護法を改正し、HFCを規制の対象に加えています。

オゾン層保護法では、第22条において、環境大臣は、オゾン層の状況及び大気中における特 定物質等の濃度の状況に関する気象庁による観測の成果等を活用しつつ、特定物質によるオゾ ン層の破壊の状況及び大気中における特定物質等の濃度変化の状況を監視し、その状況を公表 することとされています。本報告書は、同規定に基づいて、2021年度における特定物質による オゾン層の破壊の状況、大気中の特定物質等の濃度変化の状況等に関する監視結果をとりまと めたものです。

本報告書の作成に当たり、環境省に設置した成層圏オゾン層保護に関する検討会科学分科会 及び環境影響分科会の御指導を仰ぎました。また、気象庁からは、観測結果の提供等多大なる 協力をいただくとともに、「オゾン層・紫外線の年のまとめ(2021年)」から一部引用させてい ただきました。ここに、御指導、御協力をいただきました検討会委員の皆様、関係者の皆様に 深く感謝申し上げます。

本報告書が幅広く活用され、オゾン層保護及び地球温暖化防止に向けた取組が一層進められることを期待しています。

令和4年12月 環境省地球環境局

成層圏オゾン層保護に関する検討会

科学分科会

- 座長 今村 隆史 東京都環境公社 東京都環境科学研究所 所長 および国立環境研究所 客員研究員
- 委員 秋元 肇 アジア大気汚染研究センター 技術顧問
 - 秋吉 英治 国立環境研究所 地球システム領域 シニア研究員
 - 斉藤 拓也 国立環境研究所 地球システム領域 主幹研究員
 - 中根 英昭 高知工科大学 名誉教授
 - 根本 和宏 気象庁大気海洋部環境・海洋気象課 大気海洋環境解析センター 所長
 - 林田 佐智子 人間文化研究機構 総合地球環境学研究所 研究部 教授
 - 藤原 正智 北海道大学大学院 地球環境科学研究院 地球圈科学部門 大気海洋物理 学分野教授
 - 山内 恭 情報・システム研究機構国立極地研究所および 総合研究大学院大学 名誉教授

環境影響分科会

- 座長 小野 雅司 国立環境研究所 環境リスク・健康領域 客員研究員
- 委員 秋吉 英治 国立環境研究所 地球システム領域 シニア研究員
 - 市橋 正光 神戸大学 名誉教授
 - 近藤 矩朗 東京大学 名誉教授
 - 田口 哲 国立極地研究所 外来研究員
 - 竹下 秀 東海大学建築都市学部 建築学科 准教授
 - 根本 和宏 気象庁大気海洋部環境・海洋気象課 大気海洋環境解析センター 所長

3	К	•••••
既劽		•••••
]	オゾン層の状況	••••
2	特定物質等の大気中濃度	•••••
ę	太陽紫外線の状況	••••
第 「	阝 オゾン層の状況	•••••
]	オゾン層の形成と分布・その変動	•••••
	1. オゾン層の形成・分布・破壊	•••••
	2. オゾン層の自然変動	1
	3. 人為起源物質によるオゾン層破壊	1
2	世界と日本のオゾン層の観測状況	1
ĉ	オゾン層の監視結果	1
	3-1.地球規模のオゾン層の状況	1
	3-2. 極域のオゾン層の状況	2
	3-2-1. 南極域上空のオゾン層の状況	2
	3-2-2. 北半球高緯度域のオゾン層の状況	6
	3-3. 我が国におけるオゾン層の状況	
4	オゾン層の将来予測	••••• 4
	4-1. CFC、ハロン等オソン層破壊物質濃度とその推移	••••• 4
	↓-1-1. 地表面付近のオソン層破壊物質濃度の推移	••••• 4
	↓-1-2. 成僧圏でのオソン僧城環物質濃度の推移	•••• '
	1-2. 温至効未以入涙度の増加とオソン層への影響	••••• 4
	1-2-1. 温至効朱刀ス╔度の推移	••••• 4
	- 2 - 2. CO2 候及の増加とオノン 唐怓褒の) k	••••• 4
	F-2-3.002以外の価重効素及へ低度の増加となノノ層の関係 F-3 化学気候エデルを用いたオバン層の感転亦化予測	••••• 4
	- 3. 化子 X 医 て ノ ル を 用 い に オ ノ ン 層 の 付 木 変 化 子 例	^ء
Ź	ŧ 4. ヘ/>/◎ @ 吸吸 C X 医发 L ⁽⁾ / 作五 [F用	•••••
3	7月17 そ そ 2 2 2 3 1 - 成 日 - 成 - - - - - - - - - -	،
	そして、 次日間になり、シスクランデスの1000000000000000000000000000000000000	، و ا
	★ 2 GDO CCG SA / ◆ 反動< ★ 資料 3 オゾン層の日周期変動	(
	☆ 考察料 4. ブリューワ・ドブソン循環	 f
	★資料 5. オゾン層観測手法の種類	
	▶考資料 6. オゾン層の観測ネットワーク	, , , ,
	オグンデータの管理・公表 ・ ・ ・ ・ ・ ・ ・	· · · · · ·
	▶ 考資料 8. 解析に用いた衛星観測オゾンデータ	'
	▶考資料 9. 2021 年の月平均オゾン全量と偏差(%)の地球規模の分布	'
	≥考資料 10. 1979~2021 年の南半球の月平均オゾン全量分布(10月)	···· ′
	▶考資料 11.地上観測による南極域でのオゾン全量推移	8
	◎考資料 12. オゾンの高度分布とその変動-地上からの観測	8
	▶考資料 13. つくばにおける月別オゾン全量変化と高度別オゾン分圧変化の関係(2021年)	8
	≥考資料14. 南極昭和基地における月別オゾン全量変化と高度別オゾン分圧変化の関係(2021年)	8
	☆考資料 15. 成層圏数値モデル−化学気候モデルと化学輸送モデル	8
第 2	阝 特定物質等の大気中濃度	9
1	オゾン層破壊物質の種類と特性	
5	特定物質等の観測状況	···· (
ę	特定物質等の大気中濃度の監視結果	
-)-1 株字物庭英の十年中のバックグラウンド濃度の平辺	(

3-1-1. 環境省による観測結果	
3-1-2. 国立環境研究所による観測結果	104
3-1-3. 気象庁による観測結果	105
3-1-4. 大学・国際機関による観測結果	108
3-2. 日本の都市域における大気中濃度の状況	114
 特定物質の大気中濃度の将来予測 	123
参考資料	125
参考資料 1. 特定物質の特徴と用途	125
参考資料 2. 北海道における特定物質等の平均濃度の経年変化	128
参考資料 3. 川崎における特定物質等の大気中濃度の経年変化	135
参考資料 4. フロン等オゾン層影響微量ガス等監視調査における測定方法の改善点について	140
参考資料 5. 波照間島における特定物質の平均濃度の経年変化	141
参考資料 6. 都道府県・政令指定都市のオゾン層破壊物質等の観測状況	144
参考資料 7. 成層圏における特定物質の高度分布	145
第3部 太陽紫外線の状況	146
1 十阻些从迫 应 斯西	1/9
 1. 太陽糸外縁の似安 1.1 十唱些从娘の坪亜 	140
1 - 1. 太陽米外隊の限安 1 - 9 柴魚頭の地挿	140
1 = 2. 糸外縁の相悰 1 = 2 - 柴め 約益 安 た 上び 柴め 約 星の 本 新 西田	140
 1-3. 糸外様理及わよい糸外様里の変動安凶 9 十阻些从娘の知識の出況 	151
2. 太陽米//wの観測の状況 9-1 十唱些从娘の知測手法	150
2 1.	150
2 2. 采外隊觀測状況	150
 3. 太陽米/小塚の量晩桐木	150
3-9 南極城の大陽紫外線の出況	163
3 2. 府極域の太陽宗/小阪の仏仏 3 - 3 我が国の大陽紫外線の状況	105
 	169
去去检测	105
参与真和	171
参考資料1. ポイトホによる人の提供 の影響 参考容料2 紫外線に上ろ院城生能系への影響	171
参考資料 2 - 泉戸林による 2 - 泉工芯ボージ 2 - 日 参考資料 3 - 紫外線に トろ水 圏 生能 系への 影響	183
参考資料 4 紫外線による材料の 損傷	185
参考資料 5. オゾン層破壊と大気質への影響	
第 4 部 举 关 答 判	109
	104
 A / ン I 1 1 ナゾン I 1 1 ナゾン I 1 ナゾン 	194
 1 1. A / ン 増収壊初員寺の (城安	194
1 - 2 - 国際的なオゾン国保護対策	190
1 = 3. 国际的なオノン 眉体受対象	199
1 - 4. 我が国にわけるオノン唐休暖対象 1 - 5 オゾン属促進対策の効果	204 999
1 0. 4/ × 喧 体受利水の初本	222 997
2. UNED 晋倍影響証価パネル報告書英旨 (2010年) 3. UNED 晋倍影響証価パネル報告書英旨 (2010年)	 929
 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	202 946
ユ・シウストー 5 革略語一覧	240 951
♀・ 八円目目 元・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

概要

1. オゾン層の状況

■地球規模のオゾン層の状況(p.17~)

地球規模のオゾン全量は 1980 年代から 1990 年代前半にかけて大きく減少したが、その後 減少傾向が緩和し、1990 年代後半からはわずかな増加傾向がみられる。ただし、オゾン全量は 1970 年代と比べて現在も少ない状態が続いている。

2021 年の年平均オゾン全量の地球規模の分布を、オゾン量の減少傾向が止まり、オゾン量 がほぼ一定であった 1997~2006 年の平均値の分布と比較すると、赤道付近を除く南北両半球 の低緯度と北半球の中・高緯度の一部で正偏差*となり、それ以外の領域で負偏差となった。特 に、南北半球高緯度の負偏差は顕著となった。これは、南極オゾンホールの規模が例年より大 きく推移したことが要因と考えられる。

2021年の世界の月平均オゾン全量偏差の分布を月毎に見ると、北半球では-10%以上の負偏 差は、1月、5月のユーラシア大陸や4月、8月、12月の太平洋北部でみられ、一方+10%を超 える正偏差は、1月、2月、10月から12月にユーラシア大陸やの北アメリカ大陸などでみら れた。このうち北半球高緯度の負偏差の領域は、対流圏界面の高度が平年より高い領域、正偏 差の領域は対流圏界面の高度が平年より低い領域に対応している。

*偏差(%)とは、基準値(長期間の平均値など)からの差を基準値で割った大きさを百分率で示したもの。正偏差は基準値よりも大きな値であることを、負偏差は基準値よりも小さな値であることを意味する。

■南極域上空のオゾン層の状況(p.26~)

南極域(南緯 60 度~南緯 90 度)の春季に形成されるオゾンホール*の規模は、1980 年代から 1990 年代半ばにかけて急激に拡大したが、1990 年代半ば以降では、年々変動による増減はあるものの、長期的な拡大傾向は見られなくなった。

2021年の南極オゾンホールは、8月上旬に発生したのち8月下旬に急速に拡大し、10月7日に最大面積が観測された。その大きさは2,480万km²で、南極大陸の約1.8倍となった。9月中旬以降、最近10年間の平均値より大きく推移し、10月中旬以降も例年ほど縮小せず推移し、12月中旬頃から急速に縮小し、12月24日に消滅した。

2021年は南半球中高緯度の対流圏から成層圏へ伝搬する大気の擾乱が、何らかの理由でこの時期に小さかったと考えられる。そのため南極上空に形成される極渦が大きく、ほぼ円形で安定していたため、極渦内部の高度約20km付近の気温-78℃以下の領域が、6月中旬から10月下旬まで、最近10年間の平均値より概ね広く推移し、オゾン層破壊を促進させる極域成層 圏雲が例年より維持された。このことがオゾン層破壊反応を継続し、10月中旬以降もオゾンホールの規模を維持した要因の一つと考えられる。更に11月以降も極渦は大きさが小さくなりつつも勢力を維持し、高度約20km付近の気温の低い領域が消滅した後も中緯度の高濃度オゾンの渦内への流入が抑えられた結果、長期間にわたってオゾンホールが消滅せず維持されたと考えられる。

^{*}オゾンホールとは南極上空の春にオゾン全量が極端に少なくなる現象のことである。口絵の図 I (右図)でもわかるように、南極上空に穴の空いたようなオゾン全量の少ない領域が存在する。1980 年代初めからこのような現象が観測されている。

■北半球高緯度域のオゾン層の状況(p.37~)

北半球高緯度域では気象条件によるオゾン全量の年々変動が大きいため、長期的な変化傾向 は見えにくいものの、1990年代以降はそれ以前に比べ顕著に少ない年が多い。

2021 年 3 月の偏差分布は、シベリアを中心に負偏差、グリーンランドを中心に正偏差が広がり、北半球高緯度の下部成層圏の気象状況から、2021 年の北半球では顕著なオゾン層破壊は起こらなかったと考えられる。

■我が国におけるオゾン層の状況(p.39~)

札幌・つくば・那覇で観測された日本上空のオゾン全量は、札幌とつくばにおいて 1980 年 代から 1990 年代はじめまで減少した後、緩やかな増加傾向がみられる。また、那覇では 1990 年代半ば以降、緩やかな増加傾向が見られていたが、近年はオゾン全量が少ない年が続いてい る。

2021年の日本上空のオゾン全量の月平均値は、1994~2008年の平均値と比べ、札幌では、 2、9、11、12月に多くなった。つくばでは、1月に少なく、7、9、11月に多くなった。観測 開始(1957年)以来、11月はその月として1番目に多く、9月はその月として3番目に多い 値となった。那覇では、2、4、7、9~12月に多くなった。観測開始(1974年)以来、2、10、 11月はその月として1番目に多く、7月はその月として2番目に多い値となった。これら地点 の月平均オゾン全量の多寡は対流圏界面の高度の高低による影響とみられ、那覇はそれに加え、 成層圏準2年周期振動(QBO)が正の位相(赤道付近で高度とともに西風から東風に変化)で あったことの影響も考えられる。

■オゾン層の将来予測(p.49~)

数値モデル予測によると、オゾン層の回復時期は南北両半球で異なり、南半球の回復は北半 球に比べてやや遅れると予想されている。オゾン全量が 1960 年(人為起源のオゾン層破壊物 質による大規模なオゾン層破壊が起こる前)レベルまで回復する時期は、北半球の中・高緯度 域で 2030 年頃、また南半球中緯度(南緯 35 度~南緯 60 度)では 2055 年頃と予測されてい る。一方、南極域の回復はほかの地域よりも遅く、1960 年レベルに戻るのは 21 世紀末になる と予測されている。

また、オゾン層の回復には、温室効果ガス(GHG)の増加が影響を与えることも示唆されて いる。GHGの増加に伴うオゾン層の回復への影響や緯度帯による回復時期の違いは、GHGの 増加による成層圏の気温低下が成層圏オゾン量をグローバルに増加させる効果と、大気のグロ ーバル循環(ブリューワ・ドブソン循環)の加速によって輸送されるオゾン量が緯度帯によっ て異なる効果の複合作用の結果と考えられる。

熱帯域ではオゾンの少ない対流圏の空気がより多く下部成層圏へ流入してオゾン全量の増 加が抑制される一方、北半球中高緯度や南半球中緯度では極向きの下降流が強まり、オゾンの 増加した成層圏大気がこの領域の下部成層圏により多く輸送されるようになりオゾン全量の 増加が強化されると考えられる。なお南半球高緯度では、大気循環の加速の影響は小さくオゾ ン全量の増加は抑制される。

 $\mathbf{2}$

2. 特定物質等の大気中濃度

■特定物質等の大気中バックグラウンド濃度の状況(p.96~)

北半球中緯度域(北緯 30 度~北緯 60 度)の平均的な状況を代表するような国内の観測地点 (北海道内など)において、それまで増加し続けてきた特定物質(オゾン層保護法に基づき生 産等が規制されているフロン等)のうち、CFC-12の大気中濃度は 1990年代後半以降最高濃 度でほぼ横ばいであったが 2006年頃から減少し始めている。CFC-11、CFC-113、四塩化炭素 の大気中濃度は 1990年代半ば以降、約 1%/年の割合で減少している。このうち CFC-11 につ いては、国内での観測や国際機関による観測で 2014年頃から濃度の減少に鈍化が認められた が 2019年以降は再び減少に転じている。一方、大気中での寿命の短い 1,1,1-トリクロロエタ ンの大気中濃度は 1990年代以降急速に減少した。

ハロン-1211の大気中濃度は2000年代に入って増加傾向が鈍化し、近年は減少に転じた。 ハロン-1301については、増加し続けていたが、近年その増加はゆるやかになり、2015年以降 は濃度の明瞭な増加は認められない。

HCFC-22 は調査開始以来増加し続けていたが、近年その増加はゆるやかになり、2020年以降は濃度の明瞭な増加は認められない。また、HFC-134aの増加率は約5%/年で極めて大きい。

HCFC-142b は、調査開始以来増加し続けていたが、近年その増加はゆるやかになり、2014 年以降は濃度の明瞭な増加は認められない。HCFC-141b はここ数年再び濃度増加に転じる傾 向を示している。

また、2018年にオゾン層保護法が改正され、「特定物質代替物質」として HFCs が新たに規制されることとなったことを受けて、2019年度から HFCs の観測結果を掲載している。

■日本の都市域における大気中濃度の状況(p.114~)

日本の都市域の代表例として川崎市内で連続測定した CFC-11、CFC-12、CFC-113、四塩化 炭素、1,1,1-トリクロロエタンの大気中濃度は、次第に変動幅が小さくなるとともに、北海道 における大気中濃度とほとんど変わらなくなってきている。変動幅の縮小や濃度の低下には、 日本における生産の全廃及び排出抑制等が進んだ結果が反映されていると考えられる。

一方で、HCFC-22、HCFC-141b、HCFC-142b は、近年やや放出量が減少する傾向を示し ているものの、依然として頻繁に高い濃度で検出されている。このことは、これらの物質は現 在も多方面で利用されていることや、過去に製造・充填された機器装置等から大気中に放出さ れていることが反映されていると考えられる。HFC-134a においては、2010 年頃まで検出さ れていた高濃度イベントは最近ではその頻度・強度は低下している。一方で、2011 年頃から濃 度の中央値及び 20%値に明瞭な増加傾向が認められ、濃度の中央値は北海道でのバックグラ ンド濃度に比べて依然として高い。

■特定物質の大気中濃度の将来予測(p.123~)

オゾン層を破壊する CFC の生産と消費は、モントリオール議定書に基づいて先進国では 1995 年末までに、途上国では 2009 年末までに全廃されたが、大気中寿命が非常に長いため、 今後、CFC の大気中濃度は極めてゆるやかに減少していくと予測される。一方、CFC と比べ るとオゾン層破壊係数の小さい HCFC については、同議定書の規制スケジュールに従って、 先進国の生産・消費は 2020 年をもって全廃されたが、途上国においては生産・消費の削減が 進められている途中段階にあり、HCFC の大気中濃度は引き続き増加するが、今後 10~20 年 でピークに達し、その後減少すると予測される。

3. 太陽紫外線の状況

■太陽紫外線の概要(p.9、p.148~)

オゾン層は、太陽から地球にやってくる紫外線のうち、UV-C (100~280nm)のすべてと UV-B (280~315nm)のほとんど(約90%)を吸収する。これらは有害紫外線と呼ばれる。しかし波長が長い UV-A (315~400nm)は吸収しない。地表面に生物が生存できるのは、オゾン分子が地表面から離れた高度領域にオゾン層として存在し、UV-B、UV-C に対するシェルターとして働いているおかげである。

地表で観測される紫外線は、オゾン全量の他、太陽高度、雲の状況、エアロゾルの量、地表 面の反射率、海抜など、様々な要因によって変動する。また、それらの影響は波長によって異 なる。

UV-B は、核酸などの重要な生体物質に損傷をもたらし、皮膚の光老化や皮膚がん発症率の 増加、さらに白内障発症率の増加、免疫抑制など、人の健康に影響を与えるほか、陸域、水圏 生態系に悪影響を及ぼす。成層圏オゾン層の破壊によりUV-Bの地上への照射量が増大すると、 それらの悪影響が増大することが懸念される。

■南極域の太陽紫外線の状況(p.163~)

2021年の南極昭和基地における紅斑紫外線量*日積算値の月平均値は、1、3、4、11、12月 に多く、特に4月は1993年の観測開始からその月として2番に大きい値、3月はその月とし て3番目に多い値となった。紅斑紫外線量日積算値は、11月以降、平均値よりかなり大きく推 移して、1月下旬以降は並みとなった。これらは、概ねオゾン全量の推移と対応した逆相関を 示しており、紅斑紫外線量日積算値がオゾン全量に強く依存していることを示している。

*紅斑紫外線量とは、波長で定義された紫外線(UV-A、UV-B、UV-C)とは別に、人体への紅斑作 用影響を示すために、波長によって異なる影響度で重みづけして算出した紫外線量のこと。

■日本国内の紫外線量の状況と経年変化(p.165~)

2021年の紅斑紫外線量日積算値は、つくばで2、3、4、6、10、11月に多く、特に2、3、 4月は1990年の観測開始からその月として1番多い値となった。また、11月はその月として 2番目に多い値、10月はその月として3番目に多い値となった。これらは、日照時間が例年よ り長かったことやオゾン全量が例年より少なかったことが要因と考えられる。

北半球中緯度(北緯 30 度~北緯 60 度)のいくつかの観測点では、地表に到達する紫外線は 1990年以降増加している。国内の紫外線観測地点(札幌・つくば・那覇)の紅斑紫外線量につ いて、気象庁が観測を開始した 1990年代初めからの経年変化をみると、札幌、つくばでは統 計的に有意に増加している。増加の特徴として、札幌では 1990年代半ばから 2000年代に顕 著に増加している。つくばでは 1990年代に顕著に増加がみられる。なお、那覇では、1990年 代に増加傾向が見られたが、2000年以降目立った増加はみられない。こうした傾向は、上空の オゾン量の変化に関連するというよりは、雲量やエアロゾル量の変化による影響と考えられる が、紫外線量の増加に対してそれぞれどの程度寄与があるのか明らかではない。

■太陽紫外線の将来予測(p.169~)

晴天条件での紫外線量はオゾン全量に依存する。そのため、オゾン層破壊の影響により、現 在の晴天時の紫外線量は、引き続き高い状況が続いていると思われる。オゾン層の回復が期待 される中で、今後の晴天時の紫外線量は、北半球中高緯度(北緯 30 度〜北緯 90 度)では、 2020 年代には 1980 年(オゾンホールが顕著に現れ始めた年)レベルの紫外線量に戻ると予想 されていたが、北半球に位置する日本国内の3地点(札幌、つくば、那覇)の観測値について は2000年以降紅斑紫外線量の減少傾向は見られず、オゾン全量以外の効果も影響していると 考えられる。

一方、南半球では 1980 年レベルの紫外線量に戻るのは北半球よりやや遅れ、さらに南極域 (南緯 60 度~南緯 90 度) では今世紀半ばになると予想されている。なお、紫外線量は雲量、 エアロゾル、気候変化の影響も強く受けるため、紫外線量の今後の変化予測には大きな不確実 性がある。

第1部 オゾン層の状況

1. オゾン層の形成と分布・その変動

46億年前の地球誕生以来、地球上に海が生まれ、海の中の光合成生物によって大気中に大量 の酸素が放出された結果、太陽光による酸素の光分解によって地球大気上層にオゾン層が形成 されることとなった。オゾン層が形成されると、オゾン自身が太陽光を吸収してその周辺の大 気を暖めるため、オゾン層周辺では上層の気温は下層より高くなる。この気温の逆転層を成層 圏と呼んでいる。成層圏のオゾンは地球上の生物に有害な紫外線を吸収し、その地表への到達 を防ぐことによって、地表生物の生存を可能にする重要な役割を担っている。ここではオゾン 層の形成、オゾン層の分布と変動、及び人間活動によるオゾン層破壊について解説する。

1-1.オゾン層の形成・分布・破壊

大気中でのオゾンの生成

大気の主成分の一つである酸素分子は、太陽からの紫外線のうちエネルギーの高い(波長の短い)紫外線を吸収し2個の酸素原子に解離する。生成した酸素原子は周りの酸素分子と結合してオゾンを生成する。エネルギーの高い太陽紫外線は、大気中の酸素分子に吸収されるため、高度が低くなるにつれて強度が弱まる。一方、分解される酸素分子の量は高度が低い方が多いので、この2つの量のかねあいにより、オゾンが生成される効率はある高度で最大になる。

一方、生成されたオゾンは大気中での分解反応(詳細は第1部参考資料1(p.57)を参照) により消失する。またオゾンは、大気の運動によってある場所から別の場所に輸送される。そ のため、オゾンの分布は、大気中でのオゾンの生成・分解反応とオゾンの輸送のバランスによ って決まってくる。

オゾンの高度分布

図1-1-1にオゾン濃度の高度分布を示す。図からも分かる通り、オゾンの多く(大気中のオゾ ンの約90%)は「オゾン層」と呼ばれる地上から約10kmから50kmの高度領域に存在している。 図1-1-1にはオゾン濃度の高度分布と合わせて、気温の高度分布が示されている。地表面から高 度10数kmまでは、高度が高くなるに従って気温が低くなる。そのため、この高度領域は対流 活動が起こることから、「対流圏」と呼ばれる*。一方、高度約10kmより高い、オゾンが多く 存在している高度領域では、高度が高くなるに従って気温が高くなる。このような下層より上 層の大気が暖かい温度構造が見られることには、オゾン層の存在が関係している(詳細は第1 部参考資料1(p.57)を参照)。この高度約10kmから50km付近までの気温が高度とともに上

^{*} 対流圏のオゾンは、成層圏からの輸送ならびに対流圏での光化学的な生成によって供給されている。なお、対流圏には酸素分子が吸収し解離を起こすようなエネルギーの高い太陽紫外線が到達しないため、対流 圏では成層圏とは異なったメカニズムでオゾンが生成される。

オゾン層に関する基礎情報

昇している領域は「成層圏」と呼ばれる。

オゾン層は、太陽から地球にやってくる、生物に有害な紫外線(UV-B)をほとんど(約90%) 吸収する。一方、オゾン分子は生物にとって有害な物質である*。地表面に生物が生存できるの は、このオゾン分子が地表面から離れた高度領域にオゾン層として存在し、有害紫外線に対す るシェルターとして働いているおかげである。オゾン層によって吸収されなかったごく少量の UV-B(長波長側のUV-B)は地表面に到達するので、地上生物はそれに対する防御機能を備え るようになったといわれている。しかし、過度にUV-Bを浴びることは人の健康や動植物に悪 影響を及ぼすおそれがある。

(出典) US Standard Atmosphere (1976) をもとに作成

^{*} 成層圏に存在するオゾンも対流圏に存在するオゾンも化学的には同一の物質である。しかしながら、対流 圏に存在するオゾンは人の健康や作物・生物等に悪影響を及ぼすため、汚染物質として扱われ、「悪いオゾ ン(スモッグオゾン)」と称されることがある。一方、成層圏に存在するオゾンは、生物に有害な紫外線の 防御機能の役割を果たすため、「良いオゾン」と称されることがある。

オゾン全量の地球規模の分布

オゾン量は、太陽紫外線照射量や大気中輸送量の違いによって、緯度・経度や季節による 違いがある。低緯度上空の成層圏では、太陽紫外線の豊富な照射によりオゾンが多く生成さ れる。ところが図1-1-2に示した衛星観測によるオゾン全量*の地球規模の分布を見ると、オ ゾン全量は低緯度域で少なく中高緯度域で多くなっていることが分かる。そのような緯度分 布を作り出している原因は、大規模な大気の輸送過程である。

大気は、平均的には、熱帯において対流圏から成層圏に入って上昇し、中高緯度において 下降して対流圏に戻る。この全球大気循環の存在は、Alan BrewerとGordon Dobsonによる 水蒸気とオゾンの観測によって、半世紀以上昔に初めて推定された。提唱者の名前にちなん でこの循環はブリューワ・ドブソン循環と呼ばれる。成層圏内における下降流は、オゾンの 豊富な低緯度成層圏の空気を中高緯度成層圏に輸送する主要なメカニズムであり、これによ って低緯度から中高緯度にかけてのオゾン全量の増加が説明される。(詳細は第1部参考資料 4 (p.68~69)を参照)。

更に図1-1-2を詳しく見ると、オゾン全量は赤道域では少なく、南北両半球とも中・高緯度 域で多く、特にオホーツク海上空は最も多いことが分かる。また、緯度方向の変化は、中緯 度では南半球に比べて北半球で大きく、日本上空は世界的に見ても最も大きい。

単位はm atm·cm、等値線間隔は10 m atm·cm。NASA提供の衛星データ(TOMS及びOMIデータ)をも とに作成。 (出典)気象庁 オゾン層観測報告:2010

^{*} 地表から大気上端までの鉛直気柱に含まれるすべてのオゾンを積算した量をオゾン全量という。オゾン 全量は、大気中のオゾンをすべて1気圧、0℃として地表に集めた場合の層の厚さに相当する量として表さ れる。オゾン全量を表す単位としては、cm単位で表した厚みを1000倍した数値が一般に使われており、 便宜的にこの単位をmatm-cm(ミリ・アトモスフェア・センチメートル)又はDU(Dobson Unit;ドブソ ン単位)と称している。地球全体の代表的なオゾン全量は300matm-cmであるため、「代表的なオゾン 層の厚みは3mm」と表現されることもある。ちなみに、大気全体の厚みを同じ方法で表すと8kmとなる。

1-2. オゾン層の自然変動

オゾン量は、季節により変動する。また、より長期的には QBO(準2年周期振動)、太陽 黒点活動(約11年周期)などに対応した変動がある。また成層圏に達するような火山の大規 模噴煙も一時的にオゾン量に影響を与えることが知られている。人為的要因によるオゾン層の 変化を精度よく検出するためには、これらの自然要因による変動成分を正しく把握しておくこ とが必要である。

オゾン全量の季節変動

東西方向に平均したオゾン全量の1997~2006年の平均値の季節変動を図1-1-3に示す。

一般的に中高緯度域のオゾン全量は、南北半球ともに春に最大となるような季節変動が見 られる。これは、赤道域から中高緯度への成層圏大気の大規模輸送が冬から春にかけて最も 活発となるためと理解されている。

図 1-1-3 オゾン全量(1997~2006年の平均値)の季節変動

単位は m atm-cm、等値線間隔は 25m atm-cm。NASA 提供の衛星データ(TOMS 及び OMI データ)をもと に作成。図中、極域での等値線のない陰影部があるのは、太陽光が射さなくなる冬季の両極域では観測できな いため。(出典)気象庁 オゾン層観測報告:2010

赤道上空成層圏の風向変化(準2年周期振動)

赤道付近の下部成層圏では東風と西風が約2年の周期で交代することが知られており、この 現象は準2年周期振動(QBO)と呼ばれている。QBOに伴ってオゾン全量も地球規模で変動す ることがわかっており、赤道上空で東風の時は低緯度でオゾン全量が平均値より少なく、中緯 度では平均値より多くなること、西風の時は低緯度でオゾン全量が平均値より多く、中緯度で は平均値より少なくなることが観測データにより確認されている。この相関関係のメカニズム については、赤道上空成層圏の東西風の変動と南北方向の大規模循環の変動とが結びついたも のであろうと考えられている。

大気の大規模循環場の変動

一般的に、大気の大規模な流れの強さの変動によってオゾン量は変動する。成層圏におい て低緯度域から高緯度域へのオゾン輸送量が多くなると高緯度域におけるオゾン量が多くな る。このような成層圏大気の大規模循環の長期的変動がオゾン層に与える変動については、 詳しいことはまだよくわかっていない。また、対流圏の循環場の変動とオゾン層との関連も 気候変化の影響を受けることもあり、今後の研究の進展が待たれる(詳細は第1部4-4(c)オ ゾン層の変化が対流圏気候に及ぼす影響(p.56)を参照)。

太陽黒点活動(太陽紫外線量及び成層圏力学過程の変動)

太陽黒点活動に伴ってエネルギーの高い太陽紫外線の放射量が変動する(黒点数が多いと 紫外線の放射量は大きくなり、その影響は酸素分子の光分解を促進する短波長の紫外線ほど 顕著となる)ことは、人工衛星により観測されている。この変動に伴って上中部成層圏にお けるオゾンの生成量が変動するので、太陽黒点活動の極小期と極大期の間で世界平均のオゾ ン量は2~3%変動することがわかっている。また、上中部成層圏で吸収される太陽紫外線エ ネルギーの増加は成層圏気温の上昇をもたらすので、これによって成層圏大気の大循環場の 変動が起こり、下部成層圏でもオゾン輸送の変動を通じてオゾン濃度が変動するという説が 提案されている。

大規模火山噴煙

大規模な火山噴火の後で、例えば 1991 年のピナトゥボ火山噴火後の 1992 年と 1993 年に は、北半球全体でオゾン全量の減少が観測された。これは、下部成層圏に注ぎ込まれた火山噴 煙中の二酸化硫黄が硫酸エアロゾル粒子に変成し、その粒子表面での不均一相反応によってオ ゾンの消滅反応が促進されたためであるとされている(詳細は第1部4-4(b)火山噴火(エア ロゾル)がオゾン層破壊に及ぼす影響(p.55)を参照)。

長期的な変動を考慮するときには、上述の変動(季節変動、赤道上空成層圏の風向変化、大 気の大規模循環場の変動、太陽黒点活動、大規模火山噴煙)による影響を取り除く必要がある。

13

1-3. 人為起源物質によるオゾン層破壊

成層圏中に極微量に存在し、オゾンを触媒反応によって破壊する成分である水素酸化物(HO x)、窒素酸化物(NOx)、塩素酸化物(ClOx)、臭素酸化物(BrOx)などには、自然界の大気供給源に加えて、近年の人間活動の増大による人為的供給源が無視できないものがある(詳細は第1部参考資料1(p.57)を参照)。なお、成層圏オゾンに対する人為起源物質の影響を考えるに当たっては、対流圏大気と成層圏大気の交換には1~2年の時間がかかるため、対流圏で放出される人為起源物質の中で成層圏オゾンに影響を与える可能性のある物質は、これより大気中寿命が長い物質に限られる事に注意すべきである。

水素酸化物の起源物質は、対流圏から輸送される水蒸気の他、数年以上の大気中寿命を有す るメタンや水素がある。成層圏へ輸送される水蒸気量は熱帯上空の対流圏界面気温により影響 される一方、メタンや水素の放出源には人為起源発生源が含まれている。

成層圏における窒素酸化物の起源物質としては、地表から自然起源・人為起源物質として放 出され、100年以上の大気寿命を有する一酸化二窒素(N2O)の他、航空機により下部成層圏に 直接排出される NOx が人為起源物質として問題となる。一方、対流圏において自然・人為起 源物質として放出される NOx は、硝酸ガス(HNO3)や硝酸エアロゾル(NO3-)などの二次生成 物を含め、対流圏大気中寿命が短いので、成層圏における窒素酸化物の起源物質としては重要 でない。

成層圏における ClOx、BrOx の起源物質としては対流圏において自然発生源から放出され る塩化メチル(CH3Cl) (大気寿命 1~3 年)、臭化メチル(CH3Br) (大気寿命約 1 年)がある。一 方、人為起源物質として、ClOx に対しては長寿命物質であるクロロフルオロカーボン(CFC) が、BrOx に対してはハロン等の長寿命物質や燻蒸用途などに用いられる臭化メチルが極めて 重要である。

2. 世界と日本のオゾン層の観測状況

オゾン層の観測は、気球などを使って測定器を上空まで運び、その場でオゾン分子の濃度を 直接測る方法と、オゾン分子による光の吸収や発光を用い間接的に濃度を算出する遠隔測定方 法がある。遠隔測定では主に大気中の積分全量を計測するが、方式によっては高度分布まで測 定できる。また、測定器を載せるプラットフォームにより、地上からの観測、人工衛星からの 観測、気球を用いた観測などに分類できる。

地上観測体制

世界のオゾン観測地点を図 1-2-1 に示す。各観測点は北半球中緯度の陸上に偏在しており、 低緯度、南半球、海洋等では、観測点の密度がまだ不十分といえる。我が国では現在、札幌・ つくば(館野)・那覇・南極昭和基地において気象庁が観測を行っている。

図 1-2-1 オゾン観測地点の分布(2016~2020 年)

2016~2020 年のオゾン観測データが世界オゾン・紫外線資料センター(WOUDC)に登録されている地点を 示す。全量観測は 153 地点(○印)、オゾンゾンデ観測は 54 地点(□印)。なお、WOUDC の処理ソフトウェ アの不具合のため、本年度の図では反転観測地点を除く。

南鳥島でのオゾン全量観測及び反転観測、札幌と那覇のオゾンゾンデ観測は2018年1月に終了した。 (出典)気象庁提供

衛星観測体制

人工衛星搭載センサーによる観測は、同一の測定器で地球全体を広くカバーし、地上観測だ けではカバーできない広い海洋上や内陸地のデータが取得でき、これまで世界各国の衛星・測 定器で観測が行われてきた。環境省では、衛星搭載センサーILAS及びILAS-IIの開発を行い、 国立環境研究所において、データ処理解析とデータ利用研究を進めた。

気象庁では、継続性と安定性で世界的に見て最も信頼性のある米国製衛星観測器TOMS、 OMI及びOMPSで得られたデータ*を基に解析を行っている。

日本における観測体制

日本においては、1960年代後半から札幌、つくば、鹿児島、南極昭和基地においてオゾンゾ ンデ観測がおこなわれてきた。さらに 1980年代後半には那覇における観測が加わった。

日本のオゾンゾンデ観測網は、オゾン全量の緯度方向の変化が世界的に見ても最も大きい領 域に位置する南北に長い日本列島に沿って広く南北の緯度範囲をカバーし、アジアから西太平 洋域のオゾン変動を理解する上で重要なものであった。また大陸の下流域にあって、東アジア からの人為起源大気成分の対流圏内輸送過程を把握するためにも重要な位置を占めていたと いえる。さらにこれらの良質なデータは、衛星観測データの検証や化学気候モデルのパフォー マンスの確認に用いられてきた。気象庁は観測体制の見直しを行っており、2005 年には鹿児 島での観測が終了し、2018 年 2 月には札幌と那覇でのオゾンゾンデ観測が終了した。

2021年現在で継続している観測は、札幌、つくば、那覇、南極昭和基地におけるオゾン全量 観測とオゾン反転観測、つくば、南極昭和基地でのオゾンゾンデ観測である。オゾン層および 紫外線の観測地点に関する詳しい情報は気象庁のホームページを参照されたい

 $(https://www.data.jma.go.jp/env/ozonehp/5_0station.html)_{\circ}$

^{*} 気象庁では、2007 年 12 月以降の OMI 及び OMPS のデータについて、地上観測値との偏差が大きいこと などから長期的な変化傾向を解析する際には補正を行っている。

3. オゾン層の監視結果

3-1.地球規模のオゾン層の状況

(a) 2021 年のオゾン全量の状況

世界のオゾン全量の経年変化

世界平均のオゾン全量は 1980 年代から 1990 年代前半にかけて大きく減少が進んだが、 1990 年代後半に減少傾向が止まり、2000 年以降は変化が比較的小さくなっている。地上 観測によると、近年(2016~2020 年)はそれ以前(1994~2008 年)に比べわずかに増加

(回復)傾向がみられるが、オゾン層破壊が顕著に現れる以前(1970~1980年)と比較し て依然少ない状態が続いている。このような状況は、衛星観測による 2021年のデータから も確認されている。図 1-3-1に世界のオゾン全量の経年変化を示す。

世界平均のオゾン全量の1970~1980年の平均値と比較した増減量を%で示す。 実線は地上観測データ、丸は北緯70度~南緯70度で平均した衛星観測データ、横線は地上観測データの 累年平均値を示す。

1970~1980年(オゾン全量が減少する前)、1994~2008年(オゾン全量の減少傾向が止まった 1990年代 後半を含む過去15年間)、2016~2020年(最近5年間)について、長期変化を正確に求めるため、季節変 動成分を除去している。地上観測点のデータには「世界オゾン・紫外線資料センター」が収集したデータを、 衛星観測のデータには米国航空宇宙局(NASA)提供のデータをそれぞれ使用している。

(出典) 気象庁提供

世界のオゾン全量偏差(%)の分布(2021年)

2021 年の世界のオゾン全量の分布を図 1-3-2(上図)に、オゾン全量偏差(%)の分布を 図 1-3-2(下図)に示す。

2021年の世界の年平均オゾン全量の分布を、1997~2006年(オゾン全量の減少傾向が止まり、オゾン全量がほぼ一定していた期間)の平均値の分布と比較すると、赤道付近を除く南北両半球の低緯度と北半球の中・高緯度の一部で正偏差、それ以外の領域で負偏差となった。特に、南北半球高緯度の負偏差は顕著となった。これは、南極オゾンホールの規模が例年より大きく推移したことが要因と考えられる。

2021年の世界の月平均オゾン全量偏差の分布(図1-資-7を参照 p.76~)をみると、北半

令和3年度監視結果報告(オゾン層)

球では、-10%以上の負偏差は、1月、5月のユーラシア大陸や4月、8月、12月の太平洋 北部でみられ、+10%以上の正偏差は1月、2月、10月から12月にユーラシア大陸や北アメ リカ大陸等でみられた。これら負偏差の領域は、対流圏界面の高度が平年より高い領域、正 偏差の領域は対流圏界面の高度が平年より低い領域に対応している。

赤道付近では、1月から4月までは正偏差の領域が一部でみられたが、5月以降は全域が 負偏差となった。一方、赤道から少し離れた北緯25度付近では1月から3月、9月から12 月に、南緯25度付近では3月から12月に正偏差の領域が広くみられた。これらは、QBO

(赤道上空の成層圏において東風と西風が約2年周期で交代する自然変動)が正の位相

(高度とともに西風から東風に変化)であったことと対応している(第1部参考資料2を 参照 p.63~)。

南半球では、+10%以上の正偏差や-10%以上の負偏差が3月、9月、10月にみられた。 また、10月以降は高緯度で負偏差が広がり、特に10月は-30%以上となった。これは、南 極オゾンホールの規模が例年より大きく推移したことが要因であると考えられる。

図1-3-2 世界のオゾン全量(上)および偏差(下)の年平均分布図(2021年) (上図)月平均オゾン全量(matm-cm)の年平均分布図および(下図)月平均オゾン全量偏差(%)の年平 均分布図。(上図)の等値線は15matm-cm間隔(下図)の等値線は2.5%間隔。1997~2006年の平均値を比 較の基準とした。北緯60度以北の1月と11~12月及び南緯60度以南の5~7月は、太陽高度角の関係で観測で きない時期があるため省いて年平均を計算した。NASA提供の衛星観測データから作成。※口絵III参照。 (出典)気象庁提供

(b) オゾン量のトレンド解析

既知の自然要因による変動の除去

オゾン量のトレンド(長期変化傾向)をより正確に評価するためには、既知の様々な自然要 因によるオゾン変動を取り除くことが必要である。そのためオゾン量の観測値から、季節変動、 太陽黒点活動の変動(約11年ごと)、準2年周期振動(QBO)及び大規模火山噴煙による影響 (成層圏エアロゾル)、ENSO(エルニーニョ/ラニーニャ現象)を差し引いた時系列を計算す る。こうして得られるオゾン量の長期的な変動は、大気中のオゾン層破壊物質の濃度の変化に ともなう変動成分と、未知の要因による変動成分が重なった時系列と関連づけて理解されてい る。この時系列からオゾンのトレンド(長期変化傾向)を求める。

オゾン量の長期的な変化はその特徴から、1970年代及びそれ以前のオゾン量がほぼ一定していた状態、1979~1990年代前半までのほぼ直線的な減少傾向、1990年代後半の減少傾向の緩和、及び 2000年代からの緩やかな増加傾向に分類できる。

トレンドの評価方法及びその留意点

オゾン量の長期的な変化傾向を抽出するため、これまで等価実効成層圏塩素(EESC* (Newman et al., 2007))の時系列(図 1-3-3)と関連づけた解析を採用していたが、このような解析は、オゾン量の長期変化傾向が EESC の変化曲線で規定され、他の変動要因の影響を 排除してしまう欠点がある(WMO,2018)。

本報告書では、「オゾン層破壊の科学アセスメント 2018」で用いられている手法に準じて、 既知の周期的な自然変動を除去したオゾン時系列データを用いて、1979 年 1 月から 1996 年 12 月の回帰直線によりオゾン量が減少した時期の変化傾向を求め、2000 年 1 月から最新年ま での回帰直線で近年の変化傾向を求めた(図 1-3-3)。

図1-3-3 等価実効成層圏塩素 (EESC) の経年 変化

1980年を1とした相対的な値として示した。WMO (2014)と同様に、対流圏から成層圏に入ったオゾ ン層破壊物質が中緯度域まで塩素・臭素原子として 到達するまでの時間を3年として算出。また、臭素原 子のオゾン破壊効率を塩素原子の60倍とした。 EESCの数値は米国航空宇宙局(NASA)から提供。 (出典)気象庁 オゾン層・紫外線の年のまとめ (2018年)

^{*} EESC(等価実効成層圏塩素)とは、塩素及び臭素によるオゾン破壊効率が異なることを考慮して臭素濃度 を塩素濃度に換算して求めた成層圏での塩素・臭素濃度のことをいう。

長期変化傾向の解析を、世界のオゾン全量に適用した例。 実線は世界の地上観測によるオゾン全量偏差(%)で、既知の自然変動成分を除去している。比較の基準値 は1994~2008年の平均値。直線は地上観測データの1979~1996年の回帰直線(①)と2000~2019年の回 帰直線(②)。世界の地上観測点は世界オゾン・紫外線資料センター(WOUDC)のデータを用いた。 (出典)気象庁提供

なお、本報告書において、月別平均値から季節変動および既知の自然変動による影響を除去した時系列データの回帰直線から長期変化傾向を算出した図表は下記のとおり。

- 図 1-3-6 【p.22:オゾン全量緯度別トレンド】
- 図 1-3-7 【p.23:緯度別・月別オゾン全量の変化傾向(%/10年)】
- 図1-3-17下段 【p.34: 南極昭和基地上空のオゾン分圧の高度別トレンド】
- 図1-3-23 【p.41:日本上空のオゾン全量の長期変化傾向】
- 図1-3-24下段 【p.42:日本上空のオゾン分圧の高度別トレンド】

本報告書では2000年以降のオゾン量の変化を「近年の変化傾向」として評価した。

第1部3-1(c)オゾン全量のトレンドの分布及び季節変動(p.22~)で使用する地上観測地 点の選択にあたっては、毎月の月平均値と衛星による観測データとの全期間を通した比較にお いて、データの精度に大きな問題がないと判断されることを基準とした。また、観測機器の変 更等により観測データに不自然な段差がみられる場合には、その観測データに補正を施したの ち、解析を行った。衛星観測データの扱いについては第1部参考資料8(p.74~)を参照。

令和3年度監視結果報告(オゾン層)

図 1-3-5 に、気温・東西風速・南北風速データを同化した化学気候モデルで計算された北半 球中緯度のオゾン全量の長期変化傾向を示す。EESC の増加が顕著であった 1996 年以前のオ ゾン全量の低下傾向は、モデルによる計算結果にも見られる。定量的にも、図 1-3-4 に示され た世界のオゾン全量の低下傾向に近い値が得られた。

図 1-3-5 化学気候モデルで計算された北半球中緯度のオゾン全量の長期変化傾向

長期変化傾向の解析を、化学気候モデルで計算されたオゾン全量に適用した例。実線は国立環境研究所の化 学気候モデルの30-60°N平均のオゾン全量偏差(%)で、既知の自然変動成分を除去している。比較の基準値 は図1-3-3と同じく1994~2008年の平均値。直線は1979~1996年の回帰直線。

(出典)国立環境研究所秋吉英治氏提供データ

(c) オゾン全量トレンドの分布及び季節変動

オゾン全量トレンドの地球規模の分布

オゾン全量は 1980 年代から 1990 年代前半にかけてオゾン層破壊が進行した後、地球規模 (北緯 70 度~南緯 70 度)で大きく減少した。近年のオゾン層の状況は、人為的なオゾン層破 壊によりオゾン量が少なかった時期(1990 年代後半)と同程度か僅かに増加しているが、依然 として 1970 年代と比べて少ない状態が続いている。

観測されたデータによる緯度帯別オゾン全量の1979~1996年(左図)および2000~2018年 (右図)の変化傾向(%)を図1-3-6に示す。

1979~1996年の(左図)衛星観測(●印)では低緯度帯の一部(北緯20度~南緯20度)を除 き統計的に有意な減少傾向がみられ、高緯度ほど減少傾向が大きくなっている。地上観測も概 ね同様の傾向が確認できる。なお、南半球高緯度は、南極オゾンホールに関連した大規模なオ ゾン層破壊の影響により、北半球高緯度よりも減少傾向が大きい。

2000~2018年の変化傾向では、南緯10~40度を除いて有意な増加傾向がみられ、南半球高 緯度(南緯60度以南)では増加傾向が大きい。地上観測では、衛星観測と同様の傾向がみられ るが、北半球中緯度(北緯40~60度)においてはばらつきが大きい。南半球では、南緯60度以 南の誤差範囲は他の緯度帯と比べても幅があることから、南極オゾンホールの規模の年々変動 が影響していると考えられる。

なお、オゾン層破壊物質であるクロロフルオロカーボン類等の濃度は、大気中で緩やかに減 少しており、2000年以降、オゾン全量は複数の緯度帯で増加傾向がみられる。大気中のオゾン 層破壊物質の減少と自然変動が影響していると考えられているが、自然変動と比べてオゾン層 破壊物質が及ぼすオゾン全量変化が小さいため、オゾン層破壊物質がオゾン全量に及ぼす影響 を正確に見積もることは現状では難しい(WMO, 2014)。

図 1-3-6 オゾン全量緯度別トレンド

オゾン全量の長期変化傾向を示す。左図は、1979~1996年の変化傾向、右図は2000~2018年の変化傾向を示 す。緯度帯(10度)毎の衛星観測データ(●印)をプロットしている。衛星観測データの縦線は95%信頼区間 の範囲。世界の地上観測地点(121地点)のオゾン全量データ及びNASA提供の衛星観測データから作成。 (出典)気象庁 オゾン層・紫外線の年のまとめ(2018年)
オゾン全量トレンドの季節変動(衛星データ)

オゾン全量のトレンドの季節変動をみるため、緯度別・月別オゾン全量の1979~1996年(上図)と2000~2018年(下図)の変化傾向(%/10年)を図1-3-7に示す。

1979~1996年では、年間を通して低緯度帯を除き、南北両半球のほとんどの領域で有意な減 少傾向がみられた。北半球の高緯度では3~4月に、南半球の中・高緯度では8~12月にオゾン 全量の減少の割合が大きく、極域での冬季から春季にかけてのオゾン層破壊の影響が比較的大 きかったことを示している。これは冬季の低温条件下で塩素や臭素がオゾンを破壊しやすい物 質となって蓄積され、太陽光の照射を受ける春季に特にオゾン層破壊を進行させるためと考え られる(詳細は第1部参考資料1(p.57~を参照)。

2000年以降ではほとんどの領域で増加傾向が見られるが、有意なものは南半球高緯度の1~ 8月や低緯度の7~12月等の一部の領域である。南半球高緯度では8~9月にオゾンの増加の割 合が大きいが、増加が有意な領域は8月のみである。その理由は、これらの領域では、毎年の南 極オゾンホールの規模やオゾンホールの影響の及ぶ緯度が移り変わることによる年々変動が 大きいことが影響していると思われる。

図 1-3-7 緯度別・月別オゾン全量の変化傾向(%/10 年)

(上図) 1979~1996年と(下図) 2000~2018のオゾン全量の変化傾向(%/10年)の月別分布。衛星観測による帯状平均オゾン全量データを用いて求めたもの。等値線間隔は2%。薄い陰影部は95%信頼区間で有意に増加または減少している領域。濃い陰影部は欠測域(太陽高度角の関係で観測できない領域)。NASA提供の衛星観測データから作成。

(出典)気象庁 オゾン層・紫外線の年のまとめ(2018年)

(d) オゾンの高度別分布のトレンド

オゾンの高度分布のトレンド(地球規模)

オゾンの鉛直分布のトレンドをみるため、1980年代のオゾン量の変化傾向(%/10年)を緯度 高度別に示したものを図1-3-8に示す。

北半球では、中緯度から高緯度にかけての、40km付近と20km付近以下の2つの高度に減少 率の大きい領域がみられる。南半球でも、中緯度から高緯度にかけての40km付近は減少率が 大きい領域が見られる。

高度40km付近と高度20km付近のオゾン減少は、ともにCFC等から解離した塩素によるもの であるが、高度40km付近の減少は、気相反応のみによって働く触媒反応サイクルによるのに 対し、高度20km付近の減少は主にエアロゾル粒子表面での不均一相反応によって活性化され る別の触媒反応サイクルによると考えられている(詳細は第1部参考資料1(p.57)を参照)。

最近では、複数の衛星観測をつなげた長期間のデータにもとづいたトレンド解析がおこなわ れている。一方最新の衛星観測結果から、これまでオゾンの日周変動成分は小さく無視できる とされていた中部・下部成層圏でも、オゾンの日周変動が明瞭に検出されている(第1部参考 資料3(p.66~)を参照)。オゾンの日周期変動が解明された成果を踏まえ、オゾンアセスメン トレポートでは、成層圏領域におけるオゾンの日変化がトレンド解析に及ぼす影響(さまざま な手法によるオゾン測定がその固有な観測時間によってバイアスを持ちうること)について述 べられている(WMO, 2015)。

オゾン量の 1980 年代の変化傾向(%/10 年)。SAGE 衛星データで補正した最新の SBUV データを用いて EESC フィッティングを行い、1980 年代のオゾンの変化傾向(%/10 年)を求めたもの。等値線間隔は 2%。 薄い陰影部は 95%信頼区間で減少している領域。

(出典) Scientific Assessment of Ozone Depletion: 2010 (WMO, 2011)

3-2. 極域のオゾン層の状況

3-2-1. 南極域上空のオゾン層の状況

1980年代初め以降、南極域上空では、毎年 8~12 月にオゾン量が極端に減少し、オゾンホ ールと呼ばれる現象が発生する。南極域上空のオゾン層の状況に関して、2021 年のオゾンホ ールは大きな規模を維持して長期間継続した。

2021年のオゾン全量、オゾン全量の経年変化、及び高度別トレンドは以下のとおりである。

(a) 2021 年の南極域におけるオゾン全量

オゾンホールの規模の推移(衛星観測)

衛星観測データの日別値から求めた 2021 年の南極オゾンホールの規模の推移を図 1-3-9 に 示す。(南極オゾンホールの規模の定義については p.31 を参照)

2021年の南極オゾンホールは、8月上旬に発生したのち8月下旬に急速に拡大し、10月7日に最大面積が観測された。その大きさは2,480万km²で、南極大陸の約1.8倍となった。9月中旬以降、最近10年間の平均値より大きく推移し、10月中旬以降も例年ほど縮小せず推移したが、12月中旬頃から急速に縮小し、12月24日に消滅した。

2021年は南半球中高緯度の対流圏から成層圏へ伝搬する大気の擾乱が、何らかの理由でこの時期に小さかったと考えられる。そのため南極上空に形成される極渦が大きく、ほぼ円形で安定していたため、極渦内部の高度約20km付近の気温の低い領域が6月中旬から10月下旬まで、最近10年間の平均値より概ね広く推移し(p.30図1-3-14参照)、オゾン層破壊を促進させる極域成層圏雲が例年より維持された。このことがオゾン破壊反応を継続し、10月中旬以降もオゾンホールの規模を維持した要因の一つと考えられる。更に11月以降も極渦は大きさが小さくなりつつも勢力を維持し、高度約20km付近の気温の低い領域が消滅した後も中緯度の高濃度オゾンの渦内への流入が抑えられた結果、長期間にわたってオゾンホールが消滅せず維持された要因と考えられる。

2021年のオゾン欠損量(オゾンホール内で破壊されたオゾンの総量の目安)は、7月下旬以降、最近10年間(2011~2020年)の平均値より大きく推移し、その時期の最近10年間の最大値と同程度となることが度々あった。

2021年の領域最低オゾン全量(オゾンホールの深まりの目安)は7月中旬から8月は、最近10年間(2011~2020年)に観測された平均値の値を維持した。9月に入り平均値より小さい値で推移し、9月下旬から11月上旬は最近10年間の最小値と同程度となった。

25

図 1-3-9 南極オゾンホールの規模の推移(2021 年 7 月~2021 年 12 月) 実線は2021年、破線は最近10年間(2011~2020年)の平均値、陰影部の上端と下端は、同期間の最大(最高)値と最小(最低)値を示す。また、面積の図の横直線は南極大陸の面積、領域最低オゾン全量図の横直線はオゾンホールの目安である220 m atm-cmを表す。NASA提供の衛星データをもとに気象庁で作成。

(出典) 気象庁提供

月平均オゾン全量・日別オゾン全量(南極昭和基地の地上観測)

南極昭和基地上空の月平均オゾン全量を図1-3-10に示す。

2021年の状況について、平均値(1994~2008年)からの差が平均値算出期間の標準偏差以内のときを「並」、それより大きいときを「多い」、それより小さいときを「少ない」と表す。

2021年のオゾンホールの季節(8~12月)は、1994~2008年の平均値と比較すると、2、4、8 月に多くなった。2、4月は対流圏界面の高度が低かった影響と考えられる。8月は南極昭和基地 が極渦の外にあったことで、極渦内でのオゾン破壊の影響を例年より受けづらかったことが要因 として考えられる。一方、例年であれば南極オゾンホールが消滅する時期にあたる11、12月の 月平均オゾン全量は少ない値となった。11月、12月にオゾン全量が少なかったことは2021年の 南極オゾンホールが11月以降も大きな面積を維持したまま推移したことに加え、12月中旬ま で、南極昭和基地がオゾンホールの内側に位置することが多かったことによる(図1-3-11)。

●「多い」、●「並」、●「少ない」

図 1-3-10 2021 年の南極昭和基地における月平均オゾン全量

丸印はそれぞれの年の月平均値。点線はオゾンホールが出現する以前の1961~1980年の平均値。折線(実線) は1994~2008年の平均値で、縦線はその標準偏差である。 (出典)気象庁提供

図 1-3-11 2021 年の 9~12 月の南半球月平均オゾン全量の分布図 図中、▲は南極昭和基地の位置である。

令和3年度監視結果報告(オゾン層)

次に、南極昭和基地で観測したオゾン全量の日代表値(日別オゾン全量)を図1-3-12に示す。 2021年は、オゾンホールの大規模な状態が例年になく長期間安定して存在していたことを受け、 南極昭和基地がオゾンホールの内側に位置することが多かった。そのため、2021年の9月中旬から 11月下旬までの期間の南極昭和基地におけるオゾン全量は南極オゾンホールの目安である220m atm-cmを下回る日が多く、また12月下旬まで参照値期間の最小値付近で推移する日も多かった。

図 1-3-12 南極昭和基地における日別オゾン全量の推移

●は観測値(日代表値)。陰影部の上端と下端は参照値期間(1994~2008年)の最大及び最小値。横破線はオ ゾンホールの目安である220m atm-cmを示す。

(出典) 気象庁提供

2021年8月から2022年1月における南極昭和基地の月平均オゾン分圧の高度分布を図1-3-13 に示す。

9月に入り、南極昭和基地上空で顕著なオゾン破壊がみられるようになった。9月から10月の 月平均オゾン分圧は、参照値(1994~2008年平均値)に類似した高度分布を示していたが、11月 には高度約15~30km、12月には高度約10km~25kmで参照値より低いオゾン分布が観測され た。11月、12月はオゾンホールが12月24日に消滅するまでの間、例年より規模が大きく、南 極昭和基地上空の月平均オゾン分圧もこの影響を受けたと考えられる。

図 1-3-13 2021 年 8 月~2022 年 1 月の月平均オゾン分圧の高度分布グラフ(南極昭和基地) 太実線:観測値の月平均値。細実線:月の参照値(1994~2008 年平均)、横細実線:参照値の標準偏差。細破線: オゾンホールが明瞭に現れる以前の月平均値(1968~1980 年平均)。オゾン分圧(横軸)が高いほど、その層の オゾン量が多いことを示す。(出典)気象庁提供

^{* 「}オゾン層・紫外線の年のまとめ(2011年)」までは、南極下部成層圏として 30hPa の気温データを用いていた。しかし、WMO の報告等では 50hPa のデータが用いられることが多く、最大オゾン欠損量との相関も良いことが確認されているため、「オゾン層・紫外線の年のまとめ(2012年)」よりこれを用いている。

(b) オゾン全量の経年変化

オゾンホールの経年変化(衛星データ)

最盛期(9~10月)のオゾンホールの規模の指標となる3要素(年最大面積、年最低オゾン全量、 年最大オゾン欠損量(破壊量))、ならびにオゾンホールの消滅日の経年変化(1979~2021年) を図1-3-15に示す。

最盛期の南極オゾンホールの規模は3要素のいずれにおいても1980年代から1990年代半ばにかけて急激に拡大したことが認められる。一方、1990年代後半以降は、年々変動による増減はあるものの、長期的な拡大傾向はみられなくなった。また、南極オゾンホールの年最大面積とオゾン 欠損量は、2000年以降、統計的に有意な縮小傾向が認められる。

オゾンホールの消滅日(オゾン全量が 220 m atm-cm 以下の領域がなくなった日)は、オゾン ホールの消滅する 11 月や 12 月の極渦の状況が影響していると考えられる。2000 年代と比較す ると、近年は早く消滅する傾向があるが、2020 年は 1999 年、2008 年と並び最も遅くなった。

「オゾン層破壊の科学アセスメント:2018」(WMO,2018)では、南極オゾンホールは今後次 第に縮小する見込みであり、南極オゾンホールが発生する春季のオゾン全量が 1980 年の水準に 回復するのは 2060 年代と予測している。

1979~2021年の(a)オゾンホール年最大面積、(b)最低オゾン全量、(c)オゾン欠損量の年極値、(d)オゾンホールの 消滅日の経年変化。いずれの図もNASA提供の衛星データをもとに作成(主にTOMS/OMI /OMPSデータを使用。 1995年のみTOVSの高分解能赤外放射計のデータを使用)。(a)横破線は南極大陸の面積、(b)横破線はオゾンホー ルの目安である220m atm-cmを表す。(a)、直線は2000年以降の統計的に有意な変化傾向を示している。 (出典)気象庁提供

(参考)南村	極オゾン	~ ホールの規模の定義
オゾンホールの	の規模の	目安として、オゾンホールの面積、最低オゾン全量、オゾン欠損量(破壊量)の3要素が以
下のように定義	義されて	いる。
オゾンホー	ル面積	: 南緯45度以南でのオゾン全量が220m atm-cm以下の領域の面積
最低オゾン	全量	: オゾンホール内のオゾン全量の最低値
オゾン欠損	量	: 南緯 45 度以南のオゾン全量を 300m atm-cm(オゾン全量の地球規模の平均値) に回復さ
		せるために必要なオゾンの質量

月平均オゾン全量の経年変化(南極昭和基地上空)

オゾンホールの縁辺となることが多い南極昭和基地における9~12月の平均オゾン全量の経 年変化を図1-3-16に示す。各月ともオゾン全量は、1980年頃から長期的に減少し、1990年代半 ば以降は減少傾向がみられなくなったものの、少ない状態が継続している。なお、2002年の10 ~11月にオゾン全量が大きく増加しているのは、9月下旬に南極域で大規模な成層圏突然昇温 が発生し、成層圏の気温が上昇し、高濃度オゾンが流入したためオゾン層破壊の規模が小さか ったことによる。

また、2009年の11月にオゾン全量が多かったのは、南極渦が南米南端方面に移動して3週間 ほど停滞し、南極昭和基地がオゾンホールの外に位置することが多かったためである。逆に、 南米南端ではオゾンホールの内側に位置することになり、紫外線量が増加した。(de Laat et al., 2010)

2019年の9~12月のオゾン全量は全ての月で例年に比べて多かった。これは2019年のオゾン ホールの規模が特異的に小さく、更に極渦も偏在していたため南極昭和基地は9月以降のほと んどの期間オゾンホールの外側に位置していたためである。一方、2020年は9月の平均オゾン 全量は最近10年間の平均値と同程度であったが、10~12月は最近10年間の中で最も少ない値 だった。これは極渦が11月中旬までほぼ円形で安定しており、南極昭和基地は概ねオゾンホー ルの内側に位置していたこと、更に11月以降においても極渦の大きさは小さくなりつつも勢力 を維持し、南極昭和基地が極渦の内側に位置することが多かったためである。

図 1-3-16 南極昭和基地における月平均オゾン全量の経年変化(毎年 9~12 月) (出典)気象庁提供

(c) 高度分布のトレンド

南極昭和基地上空におけるオゾンゾンデ観測による高度別オゾン分圧のトレンドを図1-3-17に示す。

オゾン層の破壊が進んだとみられる1979~1996年の長期変化傾向(10年あたりの変化率 (%))を通年(図1-3-17(a))と南極オゾンホールが発生する9~11月の春季(図1-3-17(b)) で示す。この結果によると、通年では高度約10~20kmで有意な減少傾向を示し、特に15kmの 減少率が大きい。春季では、通年よりもさらに減少率が大きく、また高度約22kmでも有意な 減少傾向を示している。これらの減少率が大きい高度は、極渦内におけるオゾン破壊の影響が 大きい下部成層圏にあたるため、南極昭和基地上空のオゾン分圧の減少は南極渦内で起こった 化学的なオゾン破壊の影響が考えられる。

また、2000~2018年の長期変化傾向(10年あたりの変化率(%))の高度分布を通年(図1-3-17(c))、9~11月の春季(図1-3-17(d))で示す。これらの結果によると、通年では全高度で 大きな増減はみられず、また統計的に有意な増減もなかった。春季では高度約15~18km付近 で、統計的に有意ではないが、高い増加率となっていた。

このように、南極オゾンホールの規模が顕著になった1980年頃から1990年代半ばにかけて、 南極昭和基地上空10~25km付近のオゾン分圧は大きく減少した。2000年以降、同高度での回 帰直線から求めたオゾン分圧の増加率は正となっているが、統計的に有意な増加傾向とはなっ ていない。

33

図1-3-17 南極昭和基地上空のオゾン分圧の高度別トレンド

●印はオゾンゾンデ観測から求めた高度別オゾン分圧のトレンド。上段(a)、(b)は、1979~1996年における オゾン分圧の変化傾向(%/10年)、下段(c)、(d)は、2000~2018年におけるオゾン分圧の変化傾向(%/10 年)を示しており、月別平均値から季節変動および既知の自然変動による影響を除去した時系列データの回 帰直線から求めた。横軸は変化量、縦軸は高度。外側の折線は95%信頼区間の範囲。左(a)(c) (通年)は 月別値(1~12月)から、右(b)(d)が春季(9~11月)の月別値から求めた。なお、(a)、(b)の期間のオゾ ンゾンデ観測について、対流圏の値は精度検証できていないため描画していない。実線は対流圏界面の目安 を示す。

(出典)気象庁 オゾン層・紫外線の年のまとめ(2018年)

3-2-2. 北半球高緯度域のオゾン層の状況

北半球高緯度域でも、南極オゾンホールほど大規模ではないものの、オゾンの少ない領域が 現れることがある。北半球高緯度域のオゾン層の状況に関して、2021年のオゾン全量、及びオ ゾン層の推移は以下のとおりである。

(a) 2021 年の北半球高緯度域のオゾン層の状況

2021年3月の月平均オゾン全量分布とオゾン全量偏差分布図1-3-18に示す。

2021年3月の偏差分布は、シベリアを中心に負偏差、グリーンランドを中心に正偏差が広が り、北半球高緯度の下部成層圏の気象状況から、2021年の北半球では顕著なオゾン層破壊は起 こらなかったと考えられる。

月平均オゾン全量の等値線間隔は15 m atm-cm、偏差の等値線間隔は5%。北極点付近の白色域は太陽 高度角の関係で観測できない領域。比較の基準は1997~2006年の月別累年平均値。図は米国航空宇宙 局(NASA)提供の衛星観測データをもとに気象庁で作成。

(出典)気象庁HP「オゾン層・紫外線の年のまとめ」

令和3年度監視結果報告(オゾン層)

北半球高緯度の下部成層圏(北緯 60 度以北 50 hPa 面)における 2020 年 7 月~2021 年 6 月の最低気温は、1 月上旬まで累年平均値(1997~2006 年の月別累年平均値)と同程度かや や低い程度で推移したが、2021 年 1 月上旬に成層圏突然昇温が起きて上昇し、2 月中旬まで 累年平均値より高く推移した(図 1-3-19)。北半球高緯度の下部成層圏の気象状況から、2021 年の北半球では顕著なオゾン層破壊は起こらなかったと考えられる。

北緯60度以北の高度約20kmにおける日別の最低気温の推移。陰影中の実線は、7~12月は1979~2019年、1 月~6月は1979~2020年の平均値。陰影外の細実線は同期間の最高(最大)値及び最低(最小)値。ただ し、気温が-78℃以下の領域の面積の最小値は一年を通して0km²である。陰影は標準偏差の範囲。上図中の 横の破線は極成層圏雲出現の目安である-78℃。

(出典) 気象庁提供

(b) 北半球高緯度域のオゾン層の経年変化

北半球高緯度域のオゾン層の状況をみるために、北半球高緯度域の3月の月平均オゾン全量 偏差を図1-3-20に示す。衛星観測(TOMSおよびOMI)データによると、北半球高緯度は概ね 1990年以降オゾン全量が少ない状態が続いており、顕著なオゾン層破壊も複数年観測されてい る。特に1997年、2011年、2020年は顕著に少なかった*。北半球高緯度に位置する観測点の一 つであり1970年から観測が継続されている英国のラーウィック(北緯60度、西経1度)におけ る地上観測データでも、1990年以降にオゾン全量が少ない状態が続いていることや顕著なオゾ ン層破壊が観測される年が存在することなど衛星観測データと同様の変化が認められる[†]。

1997年、2011年、2020年の顕著なオゾン全量の減少は、下部成層圏気温が低く、比較的規 模の大きなオゾン層破壊が起こったことが要因と考えられる。また2020年は1997年と同様に、 円形に近い安定な極渦がほぼ北極を中心に位置し、オゾン量の多い中緯度域からのオゾンの輸 送が少なかったことも顕著なオゾン層破壊が発生した大きな要因の一つと考えられる。

しかしながら、北半球でのオゾン層破壊は南極オゾンホールほど大規模とはなっていない。 例えば、北半球高緯度での過去最大規模のオゾン層破壊だった2020年春季の北半球高緯度では オゾン全量が南極オゾンホールの目安である220 m atm-cmを下回った日もあったものの、220 m atm-cm以下の領域の範囲は南極オゾンホールの面積に比べて極めて限定的であり、また220 m atm-cm以下の領域の持続期間も南極オゾンホールの期間に比べると極めて短期間であった。 北半球高緯度でのオゾン層破壊が南極オゾンホールほど大規模には至らないのは、もともと春 季の北半球高緯度上空のオゾン量が春季の南極上空のオゾン量に比べて多いこと、北半球高緯 度上空の気温が南極域上空に比べ高く、北半球高緯度上空ではオゾンホール形成に必須の極成 層圏雲が発生するのに必要な低温領域の範囲が南極域上空に比べ小さい(図1-3-13の右図と図 1-3-18(b)の下図を比較)ため、極成層圏雲上での化学反応の進行が南極オゾンホールに比べて 限定的であること、更には大気の流れが南極上空に比べて複雑で極渦が持続的に安定に存在す ることが難しく、周辺領域からのオゾンの輸送の影響を受けやすいたためである。

^{* 1995} 年及び 1996 年には TOMS データがないが、SBUV/2 のデータを用いた解析によると、両年ともに春季に オゾン全量の大規模な減少が観測されている(NOAA, 2005)

^{*} 衛星観測データは北半球高緯度域の緯度平均されたオゾン全量偏差であるのに対し、地上観測(ラーウィ ック)データは一地点の観測に基づくデータであるため、衛星観測と地上観測(ラーウィック)のデータに 基づくオゾン全量偏差の変動の傾向が一致しない年もある。

●印はNASA提供の衛星データをもとに作成した北半球高緯度(北緯60度以北)域の3月の平均オゾン全量 (1979~1989年の平均値)からの偏差。なお、1995、1996年はTOMSデータがない。○印は、ラーウィッ ク(英国、北緯60度、西経1度。世界オゾン・紫外線資料センター(WOUDC)公開のデータを使用)の3月 の平均オゾン全量の1979~1989年の平均値からの偏差を示す。(出典)気象庁提供

3-3.我が国におけるオゾン層の状況

(a) 2021 年の日本上空の月別オゾン全量

気象庁で観測しているオゾン全量の2021年における月平均値の推移を図1-3-21に示す。 2021年の状況については1994~2008年の平均値からの差が平均値算出期間の標準偏差以内 のときを「並」、それより大きい時を「多い」、それより小さい時を「少ない」とした。

1994~2008年の平均値と比べると、2021年のオゾン全量の月平均値は、札幌では、2、9、 11、12月に多くなった。つくばでは、1月に少なく、7、9、11月に多くなった。観測開始(1957 年)以来、11月はその月として1番目に多く、9月はその月として3番目に多い値となった。那 覇では、2、4、7、9~12月に多くなった。観測開始(1974年)以来、2、10、11月はその月と して1番目に多く、7月はその月として2番目に多い値となった。

これら地点の月平均オゾン全量の多寡は対流圏界面の高度の高低による影響とみられ、那覇 はそれに加え、成層圏準2年周期振動(QBO)が正の位相(赤道付近で高度とともに西風から 東風に変化)であったことの影響も考えられる。(参考資料13「つくばにおける月別オゾン全 量変化と高度別オゾン分圧変化の関係」p.85を参照)

国内3地点(札幌、つくば、那覇)における月平均オゾン全量の推移。丸印は2021年の月平均値。折線(実線) は1994~2008年の平均値。縦線はその標準偏差。

(出典) 気象庁提供

令和3年度監視結果報告(オゾン層)

(b) 日本上空のオゾン全量のトレンド

オゾン全量の経年変化

札幌、つくば、那覇のオゾン全量の年平均値の経年変化を図1-3-22に示す。なお、この図は 3-1 (b) で述べた既知の自然要因による変動を除去する処理を行っていない(詳細はp.19を参 照)。よって、図に見られるオゾン全量の変化には、太陽活動(約11年周期)や準2年周期振 動(QBO)等の自然要因によるオゾン変動の影響が含まれていることに注意する必要がある。

日本上空のオゾン全量は、札幌とつくばにおいて1980年代から1990年代はじめまで減少した後、緩やかな増加傾向がみられる。また、那覇では1990年代半ば以降、緩やかな増加傾向が 見られていたが、近年はいずれの地点もオゾン全量の増加傾向が鈍化している。

札幌とつくばにおける最近の5年間(2017~2021年)の平均値をオゾン層破壊現象が顕著に 現れる以前の1970~1980年の平均値と比較すると、依然として少ない状況にあり、1970~ 1980年のレベルには回復していない。

札幌、つくば及び那覇における1993年を中心とした一時的なオゾン全量の減少は、1991年の ピナトゥボ火山噴火にともない、成層圏エアロゾルが増加し、オゾン層破壊が促進されたため に起こったと考えられる。

図 1-3-22 日本上空のオゾン全量の年平均値の経年変化(1958~2021 年) 札幌、つくば、那覇(以上●印)、におけるオゾン全量の観測開始から2021年までの年平均値の経年変化(こ こでは、既知の周期的な自然要因(太陽活動、QBOなど)と相関の高い変動成分を除去していない)。灰色破 線は1970~1980年平均値(那覇は1975~1980年)と最近5年間(2017~2021年)の平均値

(出典) 気象庁提供

自然変動要因を除去したオゾン全量の長期変化

国内3地点(札幌、つくば、那覇)の地上観測データを用いたオゾン全量とオゾン層破壊が進んだとみられる1979~1996年までの期間と、僅かな増加がみられる2000年以降の期間の既知の自然変動要因を除去した長期的な変化傾向を図1-3-23に示す。

1979~1996年のオゾン全量は、減少傾向を示していた。特に、札幌とつくばでは有意に減少しており、10年あたりの変化率は、札幌で-4.1%、つくばで-1.2%となった。2000~2018年の国内3地点で有意な増減はみられなかった。

図1-3-23 日本上空のオゾン全量の長期変化傾向

国内のオゾン全量観測による1979年以降のオゾン全量(m atm-cm)。実線は、太陽活動など既知の周期的な自 然要因と相関の高い変動成分を除去した値である。直線は、1979~1996年及び2000~2018年の回帰直線を示 す。上から、札幌、つくば、那覇のデータ。

(出典)気象庁 オゾン層・紫外線の年のまとめ(2018年)

(c) 日本上空のオゾンの高度分布にみられるトレンド

日本上空のオゾンの高度別トレンド

日本上空のオゾン鉛直分布の長期変化傾向をみるため、オゾン層の破壊が進んだとみられる 1979~1996年の変化傾向(10年あたりの変化率(%))について鉛直分布を図1-3-24上段に示 す。解析には、高度約15~22 kmのオゾンゾンデ観測データ、高度約20~42 kmの反転観測デ ータを用いた。札幌では、オゾンゾンデ観測の高度約15~20 kmにおいて、また反転観測の高 度約20~35 kmで有意な減少傾向となり、特に高度約25 km以下において減少率が大きい。つ くばではオゾンゾンデ観測、反転観測ともに高度約20 km以上で有意な減少傾向となり、特に 高度30~42 kmの上部成層圏において減少率が大きい。那覇の反転観測では高度約20~25 km と高度約35~38 kmで有意な減少傾向となった。

2000 年以降(つくばは 2000~2018 年、札幌と那覇においては、2000~2017 年)の変化傾向を図 1-3-24 下段に示す。札幌の反転観測の高度約 25km 以上で有意な増加傾向となった。 つくばでは、反転観測の高度約 32~38km で有意な増加傾向となった。

(a) 1979~1996年の変化傾向(%/10年)

図 1-3-24 日本上空のオゾン分圧の高度別トレンド

国内3地点(札幌、つくば、那覇)の上空における高度別のオゾン分圧について、(上段)1979~1996年及び(下 段)2000年以降の変化傾向(%/10年)を示している。●印はオゾンゾンデ観測データ、○印は反転観測データ による。外側の折線は95%信頼区間の範囲。那覇は、1989年より前のオゾンゾンデ観測データがないため、上 段では反転観測の結果のみ示す。上段の期間のオゾンゾンデ観測について、対流圏の値は精度検証できていな いため描画していない。実線は対流圏界面の目安を示す。下段では、つくばにおいては2000~2018年、札幌と 那覇では、2018年1月でオゾンゾンデ観測が終了したため、2000~2017年の変化傾向を示している。 上段、下段ともに季節変動および既知の自然変動による影響の成分を除去している。

(出典)気象庁 オゾン層・紫外線の年のまとめ(2018年)

4. オゾン層の将来予測

4-1. CFC、ハロン等オゾン層破壊物質濃度とその推移

4-1-1. 地表面付近のオゾン層破壊物質濃度の推移

成層圏オゾンを破壊する CFC やハロン等の有機塩素・臭素化合物(ODS: オゾン層破壊物 質)は、地上で放出された後、対流圏から成層圏に輸送され、主に太陽紫外線によって引き起 こされる光化学反応を通して塩素原子や臭素原子ならびに一酸化塩素・一酸化臭素等の無機塩 素・臭素化合物を生成する。これらの原子・分子が ClO_xサイクルや BrO_xサイクルと呼ばれ る連鎖的なオゾン分解反応サイクルの担い手となり、オゾンの消失を促進しオゾン層の破壊を 引き起こす。よって、成層圏中の塩素・臭素量の変化はオゾン層の長期的な変化を考える上で の目安となる量である。(参考資料1.成層圏におけるオゾンの生成と消滅 p.57 を参照)

将来のオゾン層の変化予測を行う際に用いた地表面での有機塩素・臭素濃度の変化シナリオ を図1-4-1に示す。地表面でのCFCなどの有機塩素濃度(CCly。破線)は1990年代前半にピー クに達した後、緩やかに減少し、2040年頃に1980年レベルに戻る(図中の縦の矢印)。一方、 ハロンなどの有機臭素化合物を考慮した有機塩素・臭素濃度(太い実線。図1-4-2と比較しやす いように有機塩素濃度CClyに有機臭素濃度CBryを60倍にした値を加えた総和として示す)で は、1990年代半ばにピークを迎えた後、2010年頃までは有機塩素濃度の変化に比べて濃度の減 少が緩やかなシナリオになっていることが分かる。これはハロン類の濃度増加が2000年過ぎま で続くと想定しているためである。その後、有機塩素・臭素濃度は有機塩素濃度とほぼ同様の 減少傾向を示し、2040年代前半には1980年の濃度レベルに戻る(図中の縦の矢印)とのシナリ オになっている。有機塩素・臭素濃度が1980年代のレベルに戻る時期が有機塩素濃度のみが 1980年レベルに戻る時期に比べて10年程度遅くなっているのは、ハロン類の大気放出がCFC などに比べてより長い期間継続すると想定したことが主な原因である。実際、多くのCFCの大 気中濃度は1990年半ばには減少傾向に転じた(詳細はp.110の図2-3-12を参照)のに対し、主 なハロン類の濃度の経年変化に関しては、ハロン-1211が減少傾向に転じたのは2005年頃を過 ぎてであり、ハロン-1301では現時点でも増加傾向が認められている(詳細はp.111の図2-3-14 を参照)。

このような有機塩素・臭素化合物の地表面濃度の経年変化は、それらの対流圏内の濃度変化 を起こす。その後、有機塩素・臭素化合物が成層圏へ達し、分解されて無機塩素・臭素化合物 に変わる時、地表面の有機塩素・臭素化合物濃度の変化より数年ほど遅れて成層圏の無機塩素・ 臭素化合物濃度に変化が起こる。その様子を次節で見ることにする。

43

図 1-4-1 オゾン層の長期変化予測数値実験に用いる地表面の有機塩素・臭素濃度の変化シナリオ

太い破線は CFC などの有機塩素(CCly)のみの変化。太い実線は塩素に対する臭素のオゾン破壊効率が 60 倍と仮定して求めた有機塩素・臭素の変化(CCly + 60CBry)。WMO2010のシナリオを元に作成。細い破線 および実線はWMO2018のシナリオを元に作成。細い点線および実線の水平線はそれぞれ有機塩素及び有機 塩素・臭素濃度の 1980 年レベルを表す。(出典)国立環境研究所秋吉英治氏提供データ

4-1-2. 成層圏でのオゾン層破壊物質濃度の推移

成層圏オゾン層破壊に対する寄与の観点から、成層圏に達した有機塩素・臭素化合物が分解 して生じた無機塩素・臭素化合物による塩素・臭素の濃度を表す指標として、等価実効成層圏 塩素(EESC。詳細は第1部3-1 (b) (p.19)脚注を参照)が提唱されている。これは、臭素が 関与するオゾン分解反応サイクルの効率が塩素のサイクルに比べて約60倍高いことを考慮し て臭素量を塩素量に換算することで求められた成層圏での塩素・臭素濃度である。地表から対 流圏を経て成層圏へ輸送された塩素・臭素は、成層圏での大気の流れによって、地球規模の平 均で3~7年程度かけて成層圏の様々な場所に運ばれる。したがって、成層圏中の塩素・臭素濃 度は3~7年程度さかのぼった対流圏濃度を反映することになる。つまり、オゾン層における塩 素・臭素濃度が1980年レベルに戻る時期は、地表面や対流圏における有機塩素・臭素濃度が 1980年レベルに戻る時期は、地表面や対流圏における有機塩素・臭素濃度が

これらの大気の輸送時間を考慮して推定された中緯度上空及び極域上空での EESC の推移 の将来予測を図 1-4-2 に示す。まず、図 1-4-1 の実線で表された地表面の有機塩素・臭素化合 物濃度の変化と比べると、そのピークが数年ほど遅れていることが分かる。更に、EESC のピ ークは中緯度では 1990 年代後半にあるのに対し、極域では 2000 年頃になっている。また、 EESC が 1980 年レベルにまで減少するには、中緯度では 2050 年頃、極域では 2065 年頃まで の期間を要することが分かる(最新の WMO2018 によると、EESC が 1980 年レベルまで減少 する時期は、中緯度では 2049 年、南極域では 2076 年と見積もられている。)

図 1-4-2 中緯度及び極域下部成層圏における等価実効成層圏塩素の推移

対流圏で放出された塩素・臭素が成層圏に輸送された後、中緯度成層圏並びに極域成層圏まで輸送される時間 (成層圏大気滞留時間とも呼ばれる)を、それぞれ3年並びに6年として算出。それぞれの領域でのEESCの 推移は1980年の値との相対値の推移として示されている。

(出典) Scientific Assessment of Ozone Depletion: 2006 (WMO, 2007) より作成

4-2. 温室効果ガス濃度の増加とオゾン層への影響

4-2-1. 温室効果ガス濃度の推移

オゾン層破壊が塩素・臭素濃度のみで決定されるのであれば、オゾン層の破壊は図 1-4-2 の 曲線に対応して、中緯度では 1990 年代後半をピークに、また極域では 2000 年代前半をピー クに減少しはじめ、中緯度では 2046 年頃に、また極域では 2073 年頃には 1980 年レベルまで オゾン層が回復することが期待される。しかし、成層圏の大気の組成は、オゾン層破壊物質だ けでなく二酸化炭素 (CO₂)、メタン (CH₄)、一酸化二窒素 (N₂O) などの温室効果ガス (GHG) の濃度も 1980 年代に比べて変化している。そこで、WMO 科学評価パネルでは、想定される オゾン層破壊物質や GHG の濃度変化シナリオの下でオゾン層の将来変化予測が行われた。将 来予測には、気候変化を含む成層圏の力学過程、化学過程をモデル化した三次元化学気候モデ ルが用いられた。モデル予測に使用された有機塩素化合物 (CCly)、二酸化炭素 (CO₂)、メタ ン (CH₄)、一酸化二窒素 (N₂O) の地表濃度の推移シナリオの例を図 1-4-3 に示す。(図中の CCly 曲線は図 1-4-1 のものと同じ)

CCly は図 1-4-1 と同じ。CO₂、CH₄、N₂O は、RCP6.0 シナリオ*を元に作成。 (出典) 国立環境研究所秋吉英治氏提供データ

^{*} RCP シナリオとは気候予測を行う際に、放射強制力のいくつかの上昇レベルに対応した温室効果ガスなどの 代表的濃度経路のシナリオのこと。図 1-4-7 を参照のこと

4-2-2. CO₂ 濃度の増加とオゾン層破壊の関係

オゾンの生成が活発な成層圏中上部における主要なオゾン分解反応である酸素原子とオゾ ンとの反応は、気温が下がると反応が遅くなる性質を持っているため、気温の低下はオゾン量 の増加をもたらす。一方、オゾン量の増加はオゾンの光化学反応によって成層圏をより加熱す る(気温を上げる)方向に働くことで、オゾンの分解速度を加速し、オゾンの増加を抑える方 向にフィードバックされる。その結果、オゾン量の増加はある程度抑制される(参考資料1. 成層圏におけるオゾンの生成と消滅 p.57 を参照)。この様な気温の変化によるオゾン量の変 化とその変化率に対するフィードバックの存在は広く成層圏全体に当てはまる。

一方で、南極オゾンホールで代表されるような極成層圏雲上での不均一反応が重要となって くる極域の下部成層圏では、気温変化とオゾン層破壊の関係は、上述の状況とは異なってくる。 極域の下部成層圏での大規模なオゾン層破壊にとって重要となる極成層圏雲の生成には、冬季 から春先にかけての気温が-78°C以下の低温になることが不可欠である。また一般に、気温 の低い領域が広範囲に存在する方がオゾン層破壊は大きく、極成層圏雲が生成し得る低温の期 間が長いほどオゾン層破壊も長期化する。この様に、極域下部成層圏の春先のオゾン層破壊で は、成層圏中上部に存在する気温を介したフィードバックは機能せず、オゾン層破壊の規模は、 極成層圏雲が生成し得る低温の領域の大きさや低温期間の持続性に依存する。

成層圏において GHG は、対流圏とは異なって、赤外線を宇宙に向けて放射することで成層 圏大気を冷却する働きを持っている。GHG の中でも CO₂は最も濃度が高く、成層圏における CO₂の増加は成層圏気温の低下に最も大きな影響を及ぼす。先に述べた通り、成層圏気温の低 下は成層圏 (特に上部成層圏)でのオゾン分解反応を減速させ、オゾン濃度の増加をもたらす。 CO₂増加によって成層圏気温が低下することでオゾン量の増加の効果は、オゾン分解反応に対 する酸素原子とオゾンの反応の寄与が大きい上部成層圏で最も顕著に表れることが予想され る。一方、極域成層圏では、気温の低下は極成層圏雲の生成を促すことでオゾン分解反応を加 速する可能性がある。

47

4-2-3. CO2以外の温室効果ガス濃度の増加とオゾン層の関係

前節で述べた通り、温室効果ガスのうち最も濃度の高い CO2の増加は、赤外線を宇宙に向け て放射することによって、成層圏気温の低下をもたらし、その結果オゾンの生成・分解速度に 影響を及ぼす。これに対し、CO2以外の主要な GHG である CH4 や N2O は CO2に比べ濃度が 低く、CH4やN2Oの濃度の増減が成層圏気温に与える影響は小さい。しかし、CH4やN2Oは 成層圏での光化学反応によってオゾン分解サイクルに関与する活性種 HO_xや NO_x*のソース ガスである(参考資料1p.57を参照)。更に CH4は、塩素原子を不活性化(塩化水素に変換) する役割も担っている。また CH4 は NOxを触媒としたオゾン生成**にも関与する。したがっ て、CH4やN2Oの濃度の増減は、成層圏におけるオゾンの生成・分解反応の効率に複雑に影 響を及ぼすと考えられている。今後の GHG の排出量の変化がオゾン層に与える影響について、 経度方向に平均化された二次元モデルを用いた数値実験からは、北半球中緯度では、N2Oの増 加は成層圏でのオゾンを減少させることで、オゾン層の回復を遅らせる方向に働く。一方、CH4 の増加は結果として成層圏のオゾンを増加させる方向に働くことが示された(Chipperfield と Feng, 2003 及び WMO, 2007, 2015)。ただし CO₂, CH₄, N₂O のオゾン層への影響の大きさは、 今後これらの温室効果ガスがどの程度放出されるかに依存する。CO2は、その放出量が大きい ほどオゾン層の回復を早める効果が大きい。N2Oはその放出量が大きいほど回復を遅らせる効 果が大きい。逆に CH4 はその放出量が大きいほど回復を早める効果が大きい。なお、CH4 は N2Oとは異なり、対流圏オゾンの生成にも関わるため、CH4の放出量の変化に対しオゾン全量 は、成層圏オゾン量の変化だけでなく、対流圏オゾン量の変化の影響も受けて変化する (WMO2018)

^{*} HO₄や NO₄の定義(説明)については、第1部参考資料1(本文 P61)を参照。

^{**} 成層圏下部ならびに対流圏では、CH₄の大気酸化反応 [CH₄ + 4O₂ + 4NO \rightarrow CO₂ + 4NO₂、4 (NO₂ + O₂ + hv \rightarrow NO + O₃)] によって光化学的にオゾンが生成される。

4-3. 化学気候モデルを用いたオゾン層の将来変化予測

成層圏のオゾン濃度や分布は、着目する領域において化学反応によって生成・消失するオゾン量と、他の領域からその領域に輸送されてくるオゾン量並びに他の領域に輸送されるオゾン 量(オゾンの輸送量)に依存する(詳細は第1部1-1(p.9)を参照)。

オゾンの生成並びに消滅に関わる化学反応の起こりやすさは、気温に依存する。一方、成層 圏ではオゾンの太陽光吸収が主要な熱源になっており、オゾン濃度の変化は気温の変化につな がる。さらに、オゾンの輸送量も成層圏の気温分布と相互に関係している。

そこで、成層圏での化学過程(オゾンの生成や消失)、物理過程(オゾンの輸送)、並びに放 射過程(放射を通した加熱・冷却)の間の相互作用を含んだ「化学気候モデル」(詳細は第1部 参考資料 15(p.88~)を参照)と呼ばれる数値モデルを用いて、オゾン層の将来変化予測が行 われている。

このような化学気候モデルを利用することによって、温室効果気体の増加とオゾン層破壊物 質の減少、両者の影響を取り込んだ将来予測実験が可能になってきている。温暖化とオゾン層 回復に関わるシナリオをそれぞれ別々に扱うような実験もおこなうことにより、温暖化とオゾ ン層回復の特徴がより明確に切り分けられるようになる。特に温暖化実験からは、ブリューワ・ ドブソン循環に代表される大気循環が強化されるという結果が得られており、大気輸送の効果 とオゾンの回復傾向との関連が注目されている。(詳細は第1部参考資料4(p.68~)を参照)。

(a) 中緯度域のオゾン層の予測

中緯度域(北緯 35 度~北緯 60 度及び南緯 35 度~南緯 60 度)での年平均・緯度平均した オゾン全量の将来予測について、緯度帯(北半球中緯度:北緯 35 度~北緯 60 度、南半球中緯 度:南緯 35 度~南緯 60 度)ごとのオゾン全量の推移を図 1-4-4 に示す。

中緯度域のオゾン全量の長期変化には南北両半球で類似の傾向(2000年過ぎに最も低いレベルに達した後、増加傾向に転じる)がみられる。しかしながら、オゾン全量が1960年レベル(人為起源のオゾン層破壊物質による大規模なオゾン層破壊が起こる前のレベル)に回復する時期は半球間で異なっており、北半球では、2030年頃に、南半球では、2055年頃と予測されている。オゾン全量が1980年レベルに回復するのは、北半球では、2010~2030年頃

(WMO2018 では 2035 年頃)、南半球では 2025~2045 年頃(WMO2018 では 2050 年頃)と なっている。オゾン全量が 1960 年レベルに回復する時期が北半球に比べて南半球で遅くなる のは、オゾンが大きく破壊された南極域の成層圏の空気塊が毎年春に南半球中緯度域に移動す る影響を受けるためである。なお数値モデル予測によれば、南北両半球とも中緯度域でのオゾ ン全量は 21 世紀後半には 1960 年レベルを超える見通しである。このような予測結果となる のは、EESC の減少の影響に加え、GHG(特に CO₂)の増加による成層圏気温の低下(オゾン 分解反応の減速)とブリューワ・ドブソン循環(詳細は第 1 部参考資料 4 (p.68~)を参照) の強化(オゾンを多く含む空気塊の輸送の増加。詳細は第 1 部 4-4 (a) (p.54)を参照)によ るものと考えられている。図 1-4-4 の破線は、オゾン層破壊物質(ODS)の放出量を 1960 年 レベルに固定した条件で、GHG の増加の影響のみによるオゾン全量の変化の予測を示す。 GHG の増加によってオゾン全量は 21 世紀末に向かって増加する。また、南半球中緯度では、

49

実線と破線が 21 世紀末になってようやく近づいてくることから、この頃にオゾン全量が ODS の影響を受けなくなることがわかる。

図 1-4-4 中緯度域におけるオゾン全量の推移予測

1960年を基準としたのオゾン全量の推移の予測。黒点は観測値で、縦線はその標準偏差。太い実線は9つの化学気候モデルによる計算結果の平均であり、薄い網掛け部分は95%信頼区間を示す。太い破線はODSを1960年レベルに固定したものであり、ODSの放出量の変化の影響がない、GHGの増加の影響のみによるオゾン全量の変化の予測を示す。横軸に平行な破線はオゾンホールが顕著に現れ始めた年である1980年のレベルを示している。

(出典) Scientific Assessment of Ozone Depletion: 2010 (WMO, 2011) より作成

(b) 極域オゾン層の予測

図1-4-5に北極域(北緯60度〜北緯90度)及び南極域(南緯60度〜南緯90度)のオゾン全量の推移を示す。

極域で予測されるオゾン全量の推移の傾向は北極域と南極域で類似しており、中緯度域のオ ゾン全量の推移と同様、2000年頃に極小を迎えたあとは、増加に転じ、21世紀末まで増加傾向 が続くと予想されている。一方、北極域と南極域を比較すると、オゾン全量が1980年レベルに 回復する時期や21世紀末のオゾン全量に違いがある。1980年レベルに回復する時期は、北極域 では2020~2035年の間(WMO2018では2030年代)と予測されるのに対し、南極域では21世 紀中頃以降(WMO2018では2060年代)と予測されている。また、21世紀末のオゾン全量は、 北極域では1960年レベルを超えているのに対し、南極域では1960年とほぼ同じレベルである。 この違いは、GHGの増加によって引き起こされるブリューワ・ドブソン循環の強化(詳細は第 1部参考資料4(p.68~)を参照)に伴う極域へのオゾンの輸送量の違いによるものと考えられ ている。図1-4-5の破線で示されるように、北極域ではGHGの増加に伴ってオゾン全量が増加 していくのに対し、南極域ではわずかに増加するにとどまっている。また南極域では、今世紀 末に近づいても実線と破線が十分に近づかないことから、この頃になってもオゾン全量はODS の影響を受けることが予想される。

令和3年度監視結果報告(オゾン層)

図 1-4-5 北極域及び南極域におけるオゾン全量の推移予測

1960年のオゾン全量を基準とした場合の推移の予測。左図は北極域の3月、右図は南極域の10月を示す。 黒点は観測値で、縦線はその標準偏差。太い実線は9つの化学気候モデルによる計算結果の平均であり、薄い網掛け部分は95%信頼区間を示す。太い破線はODSを1960年レベルに固定したものであり、ODSの放出 量の変化の影響がない、GHGの増加の影響のみによるオゾン全量の変化の予測を示す。横軸に平行な破線は オゾンホールが顕著に現れ始めた年である1980年のレベルを示している。

(出典) Scientific Assessment of Ozone Depletion: 2010 (WMO, 2011) より作成

(c) 低緯度域のオゾン層の予測

一方、低緯度域(南緯 25 度~北緯 25 度)で予測されるオゾン全量の長期的な変化の様子は、中緯度域や極域と異なっている(図 1-4-6)。すなわち、オゾン全量は 2000 年過ぎに増加傾向に転じ、2060 年頃に 1980 年レベルに回復し最大となるが、その後 21 世紀末まで再び減少すると予測されている。また、低緯度域でのオゾン全量は 21 世紀を通して 1960 年レベルよりも少ないままである。低緯度域で見られる 21 世紀半ば以降のオゾン全量の推移(再減少)は、上部並びに下部成層圏での異なる振る舞いの結果と考えられている。すなわち、EESCの減少の影響並びに GHG の増加による成層圏気温の低下(オゾン分解反応の減速)による上部成層圏でのオゾン濃度の増加の影響に対し、GHG の増加にともなうブリューワ・ドブソン循環の強化によるオゾン濃度の減少(濃度の低い対流圏大気の輸送が強化されることによる下部成層圏でのオゾン濃度の減少)の影響が 21 世紀後半には勝るためと考えられている。GHG 増加のこの効果は、ODS 変化の影響のない計算(図中の破線)によって確認することができる。

1960年のオゾン全量を基準とした場合の推移の予測。黒点は観測値で、縦線はその標準偏差。太い実線は9つの化学気候モデルによる計算結果の平均であり、薄い網掛け部分は95%信頼区間を示す。太い破線はODSを1960年レベルに固定したものであり、ODSの放出量の変化の影響がない、GHGの増加の影響のみによるオゾン全量の変化の予測を示す。横軸に平行な破線はオゾンホールが顕著に現れ始めた年である1980年のレベルを示している。

(出典) Scientific Assessment of Ozone Depletion: 2010 (WMO, 2011) より作成

(d) 温室効果ガスの排出量の違いによるオゾン層の変化の予測

オゾン層の回復時期は、今後の ODS 濃度の変化に依存するともに、緯度帯によっても異な る。更に、4-2-3 節に記載した通り GHG 濃度の変化によっても影響される。GHG の排出シ ナリオとしては、RCP(代表的濃度経路)シナリオと呼ばれている、今後の産業の発展や脱 温暖化・脱炭素に向けた取り組み等を想定した排出シナリオ(図1-4-7)が利用されている。 WMO2018 では RCP シナリオによる GHG 濃度の変化に基づいて計算されたオゾン層の将来 予測結果がまとめられている(図1-4-8)。これらの予測結果からは、温室効果ガスの排出量 が大きいシナリオ(RCP 8.5)ほど将来のオゾン全量が増加してオゾン層回復が早まる傾向に あることが分かる。また南北中緯度でのオゾン全量の変化を比較すると、北半球中緯度では オゾン全量の変化は RCP シナリオの違いに依存するのに対し、南半球中緯度では RCP シナ リオの違いによるオゾン全量の変化の違いが顕著ではない。なお本節の(a)と(b)で示された WMO2018によるオゾン全量の1980年レベルへの回復年は、温室効果ガス排出シナリオの 1つである RCP6.0シナリオによる最新の予測結果に基づくものである。

図 1-4-7 RCP シナリオに基づく将来の温室効果ガスの濃度変化 RCP history は 1960~2004 年の GHG 濃度の変化。RCP 2.6 ~ RCP 8.5 はそれぞれ、21 世紀末の放射強 制力が 2.6 W/m² ~ 8.5 W/m² に留まるように設定した濃度経路シナリオ。

図 1-4-8 GHG の排出シナリオの違いによるオゾン層の将来変化の予測計算結果(WMO2018) REF-C2 は、ODS は A1 標準シナリオ(WMO 2010)に従って、GHG などは RCP 6.0 シナリオに従って 変化させた場合の将来予測。SEN-C2-RCP45 ならびに-RCP85 は、GHG などを RCP 4.5 シナリオおよび RCP 8.5 シナリオに従って変化させた場合の将来予測(ODS は REF-C2 と同条件)。SBUV MOD は年平 均オゾン全量の実測値。

4-4. オゾン層破壊と気候変化の相互作用

オゾン層破壊と気候変化は相互(オゾン層変化が気候に、気候変化がオゾン層)に影響を及 ぼしあうと考えられる。しかしながら、化学、放射及び大気循環パターンの変化を介して引き 起こされるオゾン層破壊と気候変化の相互作用は複雑であり、そのメカニズムはまだ充分に解 明されているとは言い難い(WMO, 2011、UNEP-EEAP, 2011)。

(a) 気候変化が成層圏過程に及ぼす影響

温室効果ガス(GHG)の増加とそれに伴う気候変化は成層圏での化学的なオゾンの生成・消滅と大規模な成層圏大気の循環(ブリューワ・ドブソン循環)に影響を及ぼす結果、成層圏オ ゾンの分布やオゾン層の回復時期に影響を与えると考えられる。

4-2-3で述べた通り、GHG (特に CO₂)の増加は成層圏の気温を低下させる。成層圏の 気温低下は、4-2-2で述べた通り、オゾン生成が活発な成層圏中上部におけるオゾンの分 解を抑制するため、オゾン量を増加させる。一方、極成層圏雲上での不均一反応が重要となる 冬季~春季の極域下部成層圏では、GHG の増加による気温の低下は、極成層圏雲の生成に必 要な-78℃以下の低温条件を作りやすくする方向に働き、極域でのオゾン層破壊を加速する可 能性がある。

更に、GHG の増加はブリューワ・ドブソン循環に影響を与えることが指摘されている。気 候モデル*並びに成層圏化学気候モデル計算からは、GHG の増加によりブリューワ・ドブソン 循環が強まると予測されている。このような循環の強化が起こると、その上昇域にあたる熱帯 ではオゾンの少ない対流圏の空気がより多く下部成層圏に流入するため、オゾン全量の減少に つながると予想される。一方、極向きの下降域にあたる北半球中高緯度や南半球中緯度では大 気循環の強化により、この領域の下部成層圏にオゾンが多く輸送されることとなり、この領域 のオゾン全量を増加させると考えられる。(図 1-4-4、図 1-4-5 及び図 1-4-6 (p.51~)参照)。

また、下降域にあたる緯度帯のオゾン量の増加には、上・中部成層圏における気温の低下に 伴うオゾン量の増加が下部成層圏に輸送されるオゾンの増加にもつながる、と言ったプロセス も関わっている。これらにより、下降域にあたる緯度帯では GHG の増加によってオゾン層の 回復が早まる可能性が指摘されている。なお、南半球高緯度では、大気循環の加速の影響は小 さく、オゾン全量の増加は抑制されると考えられている。

このように、ブリューワ・ドブソン循環の変化は今後のオゾン層の回復時期に影響を与える ことが指摘されているものの、循環強化を引き起こすメカニズムはまだ解明されておらず、循 環が強まっているという事実も観測されていない(WMO, 2011、Engel et al., 2009)。(詳細 は第1部参考資料4(p.68~)を参照)。したがって、今後のGHGの増加がオゾン層回復時期 にどの程度の影響を及ぼし得るのかについてはまだ不確実な部分が多い。

水蒸気 (H₂O) も CO₂ などと同じく、放射を通して成層圏の気温に影響を及ぼす。また同時 に、H₂O は HO_xの生成や極成層圏雲をはじめとする成層圏エアロゾルの生成にも関与してい

^{*} IPCC の気候変化アセスメントなどに用いられているモデル。

令和3年度監視結果報告(オゾン層)

る。そのため、成層圏の水蒸気量の変化は将来のオゾン層の変化を考える上では重要である。 近年の下部成層圏での水蒸気量の気球観測からは、北半球中緯度の下部成層圏(<30km)で 1980~2000年の期間に増加傾向があることが報告されている。なお、1990年代半ば以降の衛 星観測からは、明瞭な増加傾向は認められていない。一方、2000~2001年にかけて中緯度並 びに熱帯の成層圏での水蒸気量の急激な減少が気球観測並びに衛星観測によって観測されて いる。成層圏水蒸気濃度の過去の変動のメカニズムはまだ充分に理解されておらず、将来の気 候変化に伴う水蒸気の変化の予測は容易ではない。

(b)火山噴火(エアロゾル)がオゾン層破壊に及ぼす影響

火山噴火もオゾン層破壊に影響を及ぼす。噴煙が成層圏にまで達するような大きな火山噴火 が起きると、硫酸を主成分とするエアロゾルが成層圏で増加する。硫酸エアロゾルの増加は、 エアロゾル上での不均一反応を介したオゾン層破壊反応を加速するだけでなく、成層圏の気温 や輸送過程の変化を通しても、成層圏でのオゾン量に影響を及ぼす。特に、低緯度帯で大規模 な火山噴火が起こった場合は、その気温やオゾン層への影響が地球規模で大きくなる。

例えば、1991年6月のフィリピンのピナツボ火山噴火では(火山噴火の影響がない)バッ クグランドレベルに比ベエアロゾル量が数十倍まで増加した。著しいエアロゾル量の増加は南 北両半球で認められ、バックグランドレベルまで減少するのに5~6年を要した。火山噴火後 の数年間にわたって南北両半球でNO2濃度の減少が観測されたが、これはエアロゾルの増加 による不均一反応の加速が原因として説明されている(WMO,1994)前述の通り、硫酸エアロ ゾルの増加に伴う不均一反応の増大はオゾン層破壊も加速すると考えられており、実際ピナツ ボ火山噴火後、北半球では数年間オゾン全量の減少が観測されている。一方、南半球中緯度で は、ピナツボ火山噴火後も顕著なオゾン全量の変化は認められていない。これはエアロゾルの 長波吸収による低緯度下部成層圏の加熱が中緯度成層圏にオゾンを輸送する大気の循環を強 化させたと考えられている。更に、準二年周期振動(QBO)が中緯度オゾンを増加する位相で あったことなども加わることで、南半球中緯度へのオゾンの輸送量が増加し、化学的なオゾン 層破壊の増大の効果を打ち消した結果と考えられている(WMO,2014)。

火山噴火による成層圏エアロゾル量の変化の影響は数年程度であり、オゾン層回復や地球温 暖化問題のような数十年〜数百年という長期的な時間スケールから見れば一時的であるが、現 在のようにオゾン層回復の兆しが僅かながら見え始めた時期に今後オゾン量がどう推移して いくかを見極める場合には、重要な因子である。特にこれまでは、ピナツボ火山噴火のような 大規模なイベントにともなう影響はよく研究されてきたが、最近では比較的小さな火山噴火に 対する影響についても調べられている。例えば、南極域のオゾン全量は2000年〜2014年の期 間において9月に統計的に有意な増加傾向を示したが、2015年にチリで起こった比較的小規 模の火山噴火の影響によってこの年のオゾンホールが拡大したことが報告されている

(Solomon et al., 2016, Bègue et al., $2017)_{\circ}$

また最近では、モンスーン循環にともなうエアロゾルの成層圏への輸送過程が注目されてい る。アジアおよび北アメリカの夏季モンスーン循環は亜熱帯の下部成層圏で低温域をともなっ ており、化学気候モデルによる結果によると、モンスーンの高気圧性循環の南東側で不均一反 応による塩素の活性化が起きているという報告がある(Solomon et al., 2016)。こういった塩 素の活性化は、定量的には必ずしも大きなものではないがオゾンの減少を引き起こしうること が示されている。

(c) オゾン層の変化が対流圏気候に及ぼす影響

オゾン層のこれまでの長期的な変化の中で最も顕著な変化は、南極成層圏でのオゾンホール の形成である。よって、オゾン層の変化が対流圏気候に及ぼす影響に関しても南極域で最も顕 著な影響が現れる可能性が高い。

南極の成層圏で春季にオゾン層が破壊されると、成層圏の気温が低下し、中緯度帯との気温 較差が拡大して、ジェット気流(偏西風)が強くなる。その影響は1~数ヶ月経って地表にも 及ぶ可能性がある。Thompson と Solomon (2002) では、1969~2000 年の間に南極大陸の 中央部から東側にかけて地表気温の低下傾向を、また、1979~2000 年の間に南極大陸周辺の 西風が強まっている傾向を示した。このようなオゾン層と地表の風との関係は、化学気候モデ ルにおいても示されている (Son et al, 2008, Son et al., 2010)。

将来、南半球の地表の気温、風がどう変化するかについては、温室効果ガスの増加も影響す る。IPCC の温暖化予測モデルや化学気候モデルによるシミュレーションにより、今後の温室 効果ガスの増加によって南半球成層圏のほぼ全域で偏西風が強まることが予想されている。ま た、化学気候モデルは、今後、ODS 規制が功を奏してオゾン層が回復していった場合は、南極 周辺の偏西風が弱まり、その弱まる領域が成層圏のみならず地表付近まで拡がることを示唆し ている。さらに、このオゾン層回復の影響は、温室効果ガスの影響を上回る可能性も示されて いる(Polvani et al., 2011)。

南半球で、オゾン層の変化を介して地表まで達する偏西風の変化は、地表気温や海洋風成循 環への直接的な影響をはじめ、様々な形で南半球の気候と関係している可能性がある。

56

参考資料

参考資料1. 成層圏におけるオゾンの生成と消滅

成層圏オゾンの生成・消滅反応

大気中でオゾン(O₃)を生成する唯一の反応は、何らかの作用によって大気中に供給された酸素原子(O)と大気の主成分の一つである酸素分子(O₂)との結合反応(反応(2))である。 成層圏で正味の化学変化としてオゾンの生成をもたらすための酸素原子の供給源は、エネルギ 一の高い太陽紫外線が到達する成層圏中上部での酸素分子の光解離反応(反応(1))である。

$O_2 + h \nu$ (太陽光のエネルギー) $\rightarrow O + O$	(1)
$2 \times [O + O_2 + M (反応の第三体) \rightarrow O_3 + M]$	(2)
正味の変化: $3 O_2 \rightarrow 2 O_3$	

ここで、Mは窒素分子又は酸素分子で、反応によって生じた化学エネルギーを持ち去り、生成 したオゾンを安定化して再び酸素原子と酸素分子に解離しないようにする役割を担っている。

オゾンは太陽の光を吸収して解離し、酸素原子を生成する(反応(3))*。オゾンの光解離 によって生成した酸素原子は直ちに反応(2)によってオゾンを再生するので、反応(3)と(2) では正味の化学変化(オゾンの生成・消滅)は起こらない。酸素分子の光解離(反応(1))に よって酸素原子が生成した場合は、正味としてオゾンの生成をもたらすのと、対照的である。

$O_3 + h \nu \rightarrow O_2 + O$	(3)
$O + O_2 + M \rightarrow O_3 + M$	(2) (再掲)
 正味の変化: 変化なし	

ここで示した反応(3)と(2)は、成層圏でのオゾンを取り巻く反応の中で最も活発に起こっている反応である。この2つの反応は正味の変化としては何らの化学変化も引き起こさないものの、紫外線を熱に変換する反応(成層圏の熱源としての反応)に相当しており、周りの大気を暖める役割を果たしている。

反応(3)によって生成された酸素原子の大部分は上述のとおり反応(2)によってオゾンを 再生するが、ごく一部はオゾンと反応することで酸素分子にもどる(反応(4))。これが成層 圏におけるオゾンの分解反応である。

$$\begin{array}{rcl}
O_3 + h \nu & \rightarrow & O_2 + O \\
O_3 + O & \rightarrow & 2 O_2
\end{array}$$

(3) (再揭)(4)

正味の変化: $2O_3 \rightarrow 3O_2$

反応(3)と(4)の正味の化学変化は、反応(1)と(2)による正味の化学変化(オゾンの生成)のちょうど逆の変化になっている。

成層圏でのオゾンの生成・消滅の基本的な部分は、反応(1)~(4)によって構成される一 連の化学反応群で説明される。反応(1)~(4)は酸素のみを考慮した化学反応群であり、純

^{*} オゾンの光解離は、紫外線のみではなく、可視光(人間の目で見える光)や赤外線の一部(理論的には波 長 1180nm より短波長の光)でも起こる。

酸素機構あるいはチャップマン機構と呼ばれている。

チャップマン機構ではオゾンの分解速度は反応(4)に支配される。反応(4)は気温が低く なると効率は悪くなるため、何らかの理由で成層圏の気温が低下するとオゾンの分解速度が低 下し、その結果、オゾン量の増加をもたらす。一方、オゾン量の増加は反応(3)と(2)を通 して成層圏をより加熱する(気温を上げる)方向に働くことで、オゾンの分解速度の低下は緩 和される*(気温の変化を介したフィードバックの存在)。

オゾン分解反応サイクル

成層圏では、反応(3)と(4)によるオゾン分解反応以外にも、成層圏に存在する極微量の 活性種が関与するオゾン分解反応がある。オゾン分解反応に関与する活性種としては、水素酸 化物(HO_xと総称。H、OH及びHO₂)、窒素酸化物(NO_xと総称。NO及びNO₂)、塩素酸化 物(ClO_xと総称。Cl及びClO)、臭素酸化物(BrO_xと総称。Br及びBrO)がある。これらの 活性種が極微量であるにもかかわらずオゾン層でのオゾンの消失に影響を及ぼし得るのは、こ れらの活性種の関与するオゾン分解反応が連鎖反応になっているためである。これまでに幾つ かのオゾン分解反応が提案されているが、その中でも成層圏中上部で重要となる反応は次に示 す反応である。

$X + O_3 \rightarrow XO + O_2$	(5)
$XO + O \rightarrow X + O_2$	(6)
正味の変化: $O_3 + O \rightarrow 2O_2$	_

ここで、X は H、OH、NO、Cl 又は Br である。反応(5) と(6) は、オゾン分解反応サイク ルを構成しており、例えば X=Cl の場合、ClO_xサイクルと呼ばれている^{**}。ClO_xサイクルは、 Molina と Rowland のクロロフルオロカーボン(CFC) によるオゾン層破壊の予見として有名 である^{***}。ClO_xサイクルの場合、反応(5) によって一酸化塩素(ClO) に変換された塩素原 子(Cl) が反応(6) によって再生され、再び反応(5) に関与することで、連鎖的にオゾンを 分解する^{*}。なお、ClO_xサイクルをはじめとする XO_xサイクルの正味の化学変化は反応(4) と同じ^{**}である。

成層圏では、下部成層圏により多くのオゾンが存在している。そのため、上部・下部成層圏

^{*}逆に何らかの理由で成層圏の気温が上昇した場合は、オゾンの分解速度が増大し、オゾン量の減少をもたら す。オゾン量の減少は成層圏の加熱を抑える(気温を下げる)方向に働くことで、オゾンの分解速度の増大 は緩和される。

^{**}同様に、X=H 又は OH の場合は HO_{α}サイクル、X=NO の場合は NO_{α}サイクル、X=Br の場合は BrO_{α}サイ クル、と呼ばれる。また、オゾン分解反応サイクルは総称として、XO_{α}サイクルと呼ばれている。

^{*** 「}CFC によるオゾン破壊」として表現されるが、CFC が直接オゾンと反応してオゾンを分解する訳では ない。CFC は Cl 原子を成層圏に運ぶ「運び屋」の役割を担っている。成層圏に達した CFC は、太陽紫外線 による光分解反応並びにその後続の化学反応によって Cl 原子を遊離する。

^{*}CFC の光化学反応では、Cl 原子だけでなく、F 原子も生成する。しかし、FO_{α}の効率は極めて悪く、オゾン分解には寄与しない。これは、F 原子が生成しても、CH₄や H₂O との反応によって容易に HF に変換され、再び F 原子に活性化されることはないことに起因している。HCl に貯留された Cl 原子が反応(16) によって活性化されるのと対照的である。

^{**}オゾン分解反応サイクルは「触媒反応サイクル」とも呼ばれている。例えば、ClO₄触媒サイクルなど。
のそれぞれの高度域に存在するオゾン量に対し、同じ割合(例えば1%の減少)のオゾンが消 失すると仮定すると、下部成層圏でのオゾンの消失の方がオゾン全量の変化により大きく影響 を及ぼすことになる。ところが、下部成層圏においては、酸素原子との反応を含む反応(5)と

(6) で表した XO_xサイクルはオゾン分解反応として充分に機能しない。この理由は、反応(5) と(6) で表される XO_xサイクルにおいてオゾンの分解効率は酸素原子の濃度に依存するが、 酸素原子の濃度は高度が下がるにつれて著しく減少するため、下部成層圏では効率的なオゾン 分解を引き起こすのに充分な濃度の酸素原子が存在しないためである。

このため、下部成層圏でのオゾン分解では酸素原子との反応を必要としないオゾン分解反応 サイクルの存在が必要であり、極微量な活性種同士の反応などが重要となる***。下部成層圏に おいて塩素酸化物が関係するオゾン分解反応サイクルの例を以下に示す。

$Cl + O_3 \rightarrow ClO + O_2$	(7)	$Cl + O_3 \rightarrow ClO + O_2$	(7)(再掲)
$OH + O_3 \rightarrow HO_2 + O_2$	(8)	$Br + O_3 \rightarrow BrO + O_2$	(11)
$ClO + HO_2 \rightarrow HOCl + O_2$	(9)	$ClO + BrO \rightarrow Br + ClOO$	(12)
$HOCl + h \nu \rightarrow OH + Cl$	(10)	$\rm ClOO + M \rightarrow \rm Cl + O_2 + M$	(13)
正味の変化: 2 O ₃ →3	O_2	正味の変化: 2 O ₃ →3	$3 O_2$

HO₂や BrO は極微量な活性種ではあるものの、下部成層圏におけるそれらの濃度は酸素原子の濃度に比べると高く、そのため ClO とは異なる反応サイクルに属するとされていた HO₂や BrO との相互反応を含む上記のオゾン分解反応サイクルが有効となる。

大気中にはこれらの連鎖反応に関与する活性種を除去する反応(連鎖を停止する反応)が存 在するため、連鎖反応が無限に続くわけではない。例えば塩素酸化物(Cl及び ClO)を介した ClO_xサイクルの場合、塩素原子がメタンとの反応によって塩化水素(HCl)に変換される反応 (反応(14))や一酸化塩素が二酸化窒素との反応によって硝酸塩素(ClONO₂)に変換される 反応(反応(15))が連鎖を停止する反応に相当する。

$Cl + CH_4 \rightarrow HCl + CH_3$	(14)
$\rm ClO + \rm NO_2 + \rm M \rightarrow \rm ClONO_2 + \rm M$	(15)

塩化水素や硝酸塩素は反応性が比較的低く、オゾン分解反応には直接は関与しない。しかし、 塩化水素や硝酸塩素からは、次の化学反応によって塩素原子や一酸化塩素が再生される。

$OH + HCl \rightarrow Cl + H_2O$		(16)
$ClONO_2 + h \nu \rightarrow Cl + NO_3$	(又は ClO + NO ₂)	(17)

このことから、塩化水素や硝酸塩素は塩素酸化物を不活性な形で一時的に貯留する役割を担っていることになる。

^{***} HO_{α} サイクルの場合、OH だけでなく、例外的に HO_2 もオゾンと直接反応するため、OH + $O_3 \rightarrow HO_2$ + $O_2 \geq HO_2 + O_3 \rightarrow OH + 2 O_2$ によって構成されるオゾン分解反応サイクル(正味の化学変化は、2 $O_3 \rightarrow 3 O_2$)が存在する。この反応群も「 HO_{α} サイクル」と呼ばれている。

オゾン層破壊物質

成層圏でのオゾン分解に関与する活性種を構成する水素、窒素、塩素、臭素は対流圏から成 層圏に輸送されてくる物質(ソースガスと呼ばれている)によって供給される*。ソースガスと しては、水蒸気やメタン(水素源)、一酸化二窒素(窒素源)**、塩化メチル(塩素源)、臭化メ チル(臭素源)がある。これらのソースガスは生物活動や自然活動によって大気に放出される ほか、人間活動に伴っても放出されている。

ソースガスの中には自然起源を持たない物質もある。人工物質であるクロロフルオロカーボン (CFC)、ハイドロクロロフルオロカーボン (HCFC)、ハロン、四塩化炭素及び1,1,1-トリクロロエタンがその代表的な物質であり、20世紀に最も顕著な濃度上昇を示したソースガスである。塩素や臭素を含むこれらの人工物質は、成層圏での塩素及び臭素の新たな供給源となっており、オゾン層破壊物質と呼ばれている。

活性種の生成、貯留、除去

成層圏に輸送されたオゾン層破壊物質をはじめとするソースガスは、光化学的な反応によっ てオゾン分解に関与する活性種を生成する。先に述べたとおり、生成した活性種はオゾン分解 反応に関与しながら反応性のやや低い物質に変換される。例えば塩素酸化物の場合、CFC など の有機塩素化合物の光化学的な反応によって生成した塩素原子は最終的に反応性が低い塩化 水素や硝酸塩素などに変換される。一方、塩化水素や硝酸塩素からは光化学的***に塩素原子や 一酸化塩素が再生される(反応(16)及び(17))。そのため、塩化水素や硝酸塩素のような反 応性のやや低い物質は活性種の貯留成分(リザーバー)と呼ばれている。

オゾン層を破壊する反応サイクルに直接関わってくるのは塩素酸化物のような活性種であ り、オゾンの分解率は活性種の濃度の変化に影響される。一方、塩化水素や硝酸塩素のような 貯留成分はオゾン分解サイクルとは直接的には関わっていないが、活性種の生成に関与してい る。特に下部成層圏では、オゾン分解に関与する活性種を構成する原子(塩素酸化物の場合は 塩素原子)の大部分は反応性の低い貯留成分として存在し、その一部が貯留成分から活性種に 変換され、活性種として存在している。さらに貯留成分から活性種を生成する効率や活性種が 貯留成分に変換される効率は貯留成分によって異なっている。したがって、オゾンの破壊効率 を正確に評価するには、貯留成分間の分配や貯留成分と活性種との間の分配を知る必要がある。

貯留成分はガス状の水(水蒸気)との間ではほとんど反応しないものの、氷や液滴の水とは なじみやすい特徴を有している。貯留成分と微粒子状の水との関係は、貯留成分から活性種の 生成や大気中からの活性種の除去とも関連しており、オゾン層破壊の規模や長期的な変化を理

^{*} 活性種の供給源としては、対流圏からのソースガスの輸送以外に成層圏を巡航する航空機からの NO_aの直接放出などもある。

^{**} 一酸化二窒素(N₂O)については、オゾン層破壊係数(ODP)(ODPについては本文 P82 を参照)が 0.017 と見積もられている(Ravishankara ら, 2009)。なお、N₂O は現在、モントリオール議定書の対象外 であり、オゾン層保護法による規制を受けていないが、京都議定書の温室効果ガスとして地球温暖化対策推 進法による排出抑制の対象となっている。

^{****} 塩化水素(HCl)から塩素原子を再生する反応(16)自体は光化学反応ではないが、塩化水素と反応する OH ラジカルは、太陽紫外線によるオゾンの光解離反応を含む一連の化学反応によって生成される。このた め、塩化水素からの塩素原子の生成も光化学的な反応として扱っている。

解する上で重要である。

対流圏から成層圏に物質が輸送されるのと同様に、成層圏から対流圏にも物質が輸送される。 成層圏に輸送されたソースガスから生成した塩素、臭素、窒素、水素の原子は、貯留成分とし て、成層圏内を輸送され、最終的には対流圏に戻ってくる。先にも述べたとおり、貯留成分は 氷や液滴の水となじみやすいため、雨に溶けて最終的には大気から除去される。

オゾンホールと極域のオゾン破壊プロセス

南極域の成層圏オゾンは、北半球の同緯度と比べて冬・春には著しく少ないことが知られて いた。これは、北極域に比べて南極域では、極をめぐる成層圏の西風(極夜渦又は極渦という) が円状に安定して流れているため、極域の空気は低緯度側のオゾンの濃い空気と混ざりにくい からだと説明されてきた。1980年代に入って、春季特に10月期にはオゾン量が異常に少ない こと、さらにその量が年々減少を続けていること、また、この低オゾン量の領域が南極大陸全 域にかぶさるように広がっていることが明らかとなって、この現象をオゾンホールと呼ぶよう になった。オゾンホールが最も発達する南半球の春季には、オゾンホール内側の下部成層圏(高 度 10~25km)において、オゾンがなくなったといえるほど低濃度となることが観測されてい る。

オゾンホールが形成される春季の南極域では、太陽光は弱いため充分な濃度の酸素原子が存 在できず、反応(5)と(6)で示したようなオゾン分解サイクルは効率的ではない。さらに、 著しい低濃度オゾンが観測される10~25kmの高度領域では、通常ならば塩素酸化物・臭素酸 化物の大部分は化学的にやや不活性な貯留成分の形で存在しているため、反応(9)~(15) で示したようなオゾン破壊反応サイクルもそれほど強力に働かないはずである。このため、オ ゾンホール形成では何らかの特異的なオゾン分解反応が存在していると考えられた。

南極域上空の成層圏の気温は冬季(極夜)に著しく低下するため、南極域下部成層圏では極 成層圏雲(PSC)と呼ばれる微粒子が生成される。極成層圏雲が存在すると、太陽光が届かな い条件でもその粒子表面で不均一相反応(反応(18)~(20))が進行し、反応性が低い硝酸 塩素や塩化水素が、光解離しやすい塩素分子(Cl₂)や次亜塩素酸(HOCl)に変換される。

$ClONO_2$ (気相)+ HCl(固相) → Cl ₂ (気相) + HN	NO3 (固相) (18)
$ClONO_2$ (気相) + H ₂ O (固相) → HOCl (気相) + H	NO ₃ (固相) (19)
HOCl (気相) + HCl (固相) \rightarrow Cl ₂ (気相) + H ₂ O	(固相) (20)

さらに、上記の不均一相反応によって生成される硝酸(HNO₃)は極成層圏雲粒子上にとど まるため、気相中では NO_x濃度が低く抑えられることになり、反応(17)の連鎖停止反応の 効率が抑えられ、効率よく連鎖反応が進行するための条件が整うことになる。

南極域では反応(18)~(20)で表した不均一相反応が効率よく進むため、太陽光が戻る春季に光化学反応を通して多くの塩素酸化物が生成されることになる。実際、オゾンホール内では高濃度の ClO の存在が観測で確かめられている。このように、南極域成層圏では ClO 濃度が異常に高いため、反応(21)~(23)を含む特異的なオゾン分解反応が存在し、著しいオゾ

ン破壊が進行している。

$ClO + ClO + M \rightarrow ClOOCl + M$	(21)
$ClOOCl + h \nu \rightarrow Cl + ClOO$	(22)
$ClOO + M \rightarrow Cl + O_2 + M$	(23)
$2 \times [\text{ Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2]$	(7)(再掲)
正味の変化: 2 O ₃ → 3 O ₂	

なお、上記のオゾン分解反応も ClO_x サイクルと呼ばれている。

また、オゾンホール内では高濃度の ClO が存在するため、上記の ClO_xサイクル以外にも ClO が関与する反応によって、オゾンが効率的に分解される。特に、先に反応(11)~(13) の形で述べた ClO-BrO の相互反応を含むオゾン分解サイクルは重要である。

南極域と北極域の相違

極成層圏雲は冬季成層圏の極低温状態でのみ存在し、高度 20 km 付近で−78℃以下で形成さ れる、硝酸水和物の結晶微粒子又は硫酸・硝酸・水の過飽和混合液の微粒子から成るものと、 −85℃以下で形成される氷の結晶微粒子から成るものとの二種類がある。極夜渦が安定してい て成層圏大気が極低温となる南極域冬季では、極成層圏雲が下部成層圏に常に存在し、塩素化 合物は活性化され、春になって成層圏に太陽光が当たるようになると、一気にオゾン分解反応 サイクルが働き出し、オゾンが減少し始める。

一方、北極域の冬季は、成層圏の極夜渦は下層大気の擾乱の影響を受けて変形・蛇行しやす く、冬の途中で分裂・衰退することもあり、一般的に不安定である。このため、極成層圏雲は 冬の間長期継続して存在することは珍しく、したがって、南極域のような大規模なオゾンホー ルは発生しにくい。それでも、南極域と同じオゾン分解反応サイクルは北極域でも働いており、 年によっては小規模のオゾンホールが現れることもある。オゾンが少なくなった北極域の空気 は間歇的に低緯度側に拡がるので、北半球の中高緯度における冬・春のオゾン減少は近年顕著 である。

参考資料 2. QBO によるオゾン変動

赤道大気の準2年周期振動(QBO)は、赤道域の下部成層圏において約2年の周期で東風と 西風が交代する現象である(e.g.Anstey et al., 2022)。1-2節で述べたとおり、オゾン全量に は QBO に伴う地球規模の変動が存在する。その変動は、主に QBO に伴う鉛直流(上下方向 の大気の流れ)の変動によるものなので、本節では QBO の鉛直構造と、QBO に伴ってオゾン 量が変動するしくみを解説する。

近年の QBO とそれに伴うオゾン全量偏差

図 1-資-1 の上のパネルには、2007 年以降の赤道上空における東西風速の鉛直分布の経年変 化を示す。図で、ある気圧面において横軸の時間方向に風速を見ていくと、東風と西風が約 2 年の周期で交代していることがわかる。また、東風も西風も上層から時間とともに下層へ降り てきており、例えば、30hPa付近の高度で東風(図 1-資-1 で陰影なしの部分)の時は、下層の 70hPa付近の高度では西風になっている、といったような鉛直構造をしている。

下のパネルには、一例として(a) 2010年10月(b) 2010年4月のオゾン全量の1997年 ~2006年平均値からの偏差の分布を示す。30hPaで西風となっている(a) 2010年10月では 赤道付近のオゾン全量が増加しそのすぐ高緯度側(30ど付近)で減少、逆に30hPaで東風と なっている(b) 2010年4月では赤道付近のオゾン全量が減少しそのすぐ高緯度側(30度付 近)で増加している。また、2010年の4月および10月に限らず、過去に赤道上空の東西風分 布が(a) または(b) と同様な状況であったときは、同様なオゾン全量の偏差が生じている⁴。 上のパネルで太い縦実線は(a) の状況に相当する時期で、赤道付近でオゾン全量が増加しそ のすぐ高緯度側で減少が見られた時期、太い縦鎖線は(b) の状況に相当する時期で、赤道付近 でオゾン全量が減少しそのすぐ高緯度側で増加が見られた時期である。(b) の状況においては、 下部成層圏に西風が長く留まる場合が多く、したがって、(b) に相当するオゾン全量の変化も その期間に長く見られることが多い。

⁴ https://acd-ext.gsfc.nasa.gov/Data_services/met/qbo/qbo.html

図 1-資-1 QBO による赤道東西風の変動とオゾン全量偏差

(上)シンガポール(1°N, 104°E)における月平均東西風速の時間-高度断面図。等値線は10m/sの間隔で 描かれている。正の値(陰影部分)が西風、負の値(白い部分)が東風。縦の黒太実線は30 hPaで西風とな っているフェーズで、赤道でオゾン全量が正偏差、そのすぐ高緯度側で負偏差の構造が最もよく認められる時 期を表す。縦鎖線はその逆のフェーズの時期を表す。ただし、後者のフェーズは比較的長く続く傾向があるの で期間で示されている。

(出典) ベルリン自由大学の QBO データサイト*の Figure 1 を元に作成。

(下)月平均オゾン全量偏差(%)の地球規模の分布図。1979~2006年の平均値からの偏差を表す。正の値 (白い部分)、負の値(網掛け部分)を示す。(a)2010年10月、(b)2010年4月。上のパネルにそれぞれの 時期が矢印で示されている。

(出典)気象庁オゾン層観測報告2010・資料1より作成。

QBO に伴う鉛直流とオゾン輸送

大気中のオゾン濃度は光化学反応と輸送の両方の影響を受けて変化する。QBO が起こる下 部成層圏ではオゾンの光化学寿命が長く、オゾン混合比の鉛直勾配が大きい(上層に向かって 急増する分布をしている)ので、QBO によって1年スケールの非常にゆっくりとした上昇流 偏差または下降流偏差が生じた場合でさえも、それによるオゾンの輸送の変化によってオゾン 濃度が変化する。図1-資-2に、赤道下部成層圏の上層(たとえば30hPa)が西風、下層が東風 の場合(a)と、その逆の上層が東風、下層が西風(b)の場合に生じる鉛直・南北風の平均状

^{*} https://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html

態からの偏差(矢印)と気温の偏差(図中、WARM, COLD で表示されている)を示す。ここ で(a)(b)は、図1-資-1の(a)(b)の時期に対応している。(a)の場合、西風が吹いている 上層では、赤道から少し離れたところではコリオリカによって南北両半球とも赤道向きに流れ が収束し、東風が吹いている下層では、その逆に南北両半球とも流れが赤道から離れて発散す る。それを補うように上層から下層へ下降流偏差が生じる。この下降流偏差によって、もとも と赤道域に生じている上昇流が弱まり、オゾン濃度の低い下層からの空気の流入が弱まり、オ ゾン全量が増加する。また、両半球の赤道から少し離れたところ(30度付近)では上昇流偏差 が生じ、これによってオゾン全量が減少する。(b)の場合、(a)と逆のことが起こる。

日本など、亜熱帯~中緯度域における QBO によるオゾン全量の変化は、赤道のすぐ高緯度 側(図 1-資-2(a)の上昇流、(b)の下降流)の影響を間接的に受けていると考えられる。

QBOによる、経度平均の東西風速(鎖線)、経度平均気温の偏差(実線)、鉛直・南北風の偏差(矢印)、西風の加速(+)・減速(-)の分布。(a)上層に向かって西風が強まる場合(b)上層に向かって東風が強まる場合。(a)の状態では上層の西風が吹いている領域で西風の減速(図中の-)、下層の東風の吹いているところで西風の加速(図中の+)が起こり、1年ほどで(b)の状態へと移る。(b)では、上層の東風の吹いているところで西風加速、下層の西風の吹いているところで西風の減速が起こり、1年ほどで(a)の状態へ戻る。 (出典)Plumb and Bell (1982) Figure 1 より作成

参考資料3.オゾン層の日周期変動

(その実態・メカニズムとトレンド推定への影響)

概要

成層圏(高度 10-50km)オゾン層は人体に有害な紫外線を吸収すると同時に、地球気候形成 に極めて重要な役割を果たしている。これまで様々な時間スケールのオゾン量変動が研究され てきたが、地球大気の基本的な周期性である日周期変動(一日の中でオゾン量がどのように変 化するか)については観測例がほぼ皆無であった。

その折、SMILES (Superconducting Submillimeter-Wave Limb-Emission Sounder: 超伝 導サブミリ波リム放射サウンダ)が国際宇宙ステーション日本実験棟(JEM: Japanese Experiment Module)「きぼう」の船外プラットフォームに取りけられ、大気微量成分観測を実 施した(期間: 2009年10月-2010年4月)。SMILES は(a)超高精度観測(b)一日のうち異な る時刻を観測可能、という日周期変動観測に不可欠な二大長所を併せ持つ。

SMILES 観測データを用いた研究からオゾン日周期変動のグローバルパターンを世界で初めて高精度で検出⁽¹⁾し、数値シミュレーションの結果も使用してその変動メカニズムを解明⁽²⁾ した。これにより、観測・理論に裏打ちされた成層圏オゾン日変動の描像を世界で初めて得る ことができた。

(1) オゾン日周期変動のグローバルパターンの検出

図 1-資-3 左に示すように、成層圏オゾン量は高度によって異なる日周期変動パターンを示 し、その変動幅は平均値に対して最大 8%程度に達することがわかった。これはオゾン層破壊・ 回復に伴う長期変化(数%/10 年)と同程度の大きさである。また、カラムオゾン量(ある地 点の上空に存在するオゾンの総量)も 1%程度の日周期変動を示すこともわかった。なお、観 測とは独立な化学輸送モデル(数値シミュレーション)でも同様の特徴が再現されている(図 1-資-3 右)。

(2)変動メカニズムの解明

従来、成層圏オゾン日変動は主として光化学効果(太陽光の日周期変動による光化学変化) によって生じると予想されていが、化学輸送モデルの解析により、これらに加えて力学効果(上 昇流/下降流の日周期変動によるオゾンの鉛直輸送効果)も重要であることがわかった。

オゾンアセスメントレポートにおける本成果の位置付け

上記の成果は「2014年科学評価パネル(WMO, 2014)」の2.3.1節「オゾン日周期変動とそ れらが長期トレンド推定に与える影響」において、オゾン量変動に関する新たな知見として取 り上げられた。同時に、日周期変動の実態解明は「オゾン長期トレンド推定の精度向上の鍵」 としても注目されている。すなわち、オゾンの長期トレンドを推定するにあたって用いられる 衛星観測のほとんどは(SMILESとは異なり)一日の特定の時刻にのみ観測を行う。したがっ て、観測時刻に偏りのあるデータを扱う際には、日周期変動を考慮した補正を行う必要がある (図 1-資-4 参照)。この問題は従来から指摘されてはいたものの、日周期変動の実態が明らか でなかったため等閑にされてきた。SMILES の精密観測によってもたらされた本成果は、この 問題を解決する突破口を開くものである。成層圏におけるトレンドは「数%10年」のオーダー であり、日周期変動補正の効果は無視できない。アセスメントレポートへの掲載は、今後これ らの効果を考慮したより精度の高いトレンド推定を促すものと理解される。

図 1-資-3 熱帯(10°S-10°N)におけるオゾン量の日周期変動

単位:日平均値に対する割合(%))の時刻(横軸) - 高度(縦軸)断面図。(左)SMILES 観測結果、および(右)化学輸送モデル(WACCM)によるシミュレーション結果。Sakazaki et al. 2013に基づく。同図がWMO(2014)にも掲載された。

(出典) 京都大学生存圏研究所坂崎貴俊氏提供データ

図 1-資-4 オゾン量およびその長期トレンド推定に日周期変動が影響を与える例

(CASE 1) 特定の時刻にのみ観測を行う衛星データ(例:太陽掩蔽観測)を使用する際、日周期変動による 観測量のバラつきを補正することが必要(Sakazaki et al., 2015)。(CASE 2) 観測する時刻が経年変化する衛 星データ(例, SBUV(/2))を使用する際、日周期変動による"偽の経年変化"の除去が必要。(CASE 3) 異なる衛星 観測データを統合して一つの時系列を構築する際、観測時刻差によるデータ補正が必要。 (出典)京都大学生存圏研究所坂崎貴俊氏提供データ

参考資料 4. ブリューワ・ドブソン循環

空気は、平均的には、熱帯において対流圏から成層圏に入って上昇し、中高緯度において下降して対流圏に戻る。この全球大気循環の存在は、Alan Brewer と Gordon Dobson による水蒸気 とオゾンの観測によって、半世紀以上昔に初めて推定された。これが名前の由来である。成層 圏内における下降流は、オゾンの豊富な中部上部成層圏の空気を下部成層圏に輸送する主要な メカニズムであり、これが特に冬季から春季にかけてのオゾン全量の大きな南北勾配を作り出 している。最近の研究により、ブリューワ・ドブソン循環はふたつの異なる経路に分けて理解 することが適切であることが分かってきた (図 1・資・5)。ひとつは shallow branch (浅い経路) と呼ばれるもので、下部成層圏内を熱帯から上昇しつつ極方向へ流れて亜熱帯から中緯度にお いて下降するものである。もうひとつは deep branch (深い経路) と呼ばれるもので、上部成層 圏から中間圏にまで至ったのちに下降し中高緯度にまで至る流れである。後者の方は成層圏滞 在時間が数年から 10 年と非常に長くなる。

大気微量成分の分布を決める輸送過程としてのブリューワ・ドブソン循環は、対流圏で生成 し上方伝播してくるさまざまな大気波動の砕波により駆動される残差子午面循環、地球規模の ロスビー波等による水平混合、乱流拡散の三者があわさったものであると言える。水平混合は 特に中緯度で重要である。また、成層圏と中間圏の気温分布は、オゾン、二酸化炭素、水蒸気 分布に影響を受けた放射伝達過程により決まる気温分布が、ブリューワ・ドブソン循環に伴う 熱力学過程(上昇域で降温、下降域で昇温)により変調を受ける形で決まっている。

地球温暖化の進行に伴い、ブリューワ・ドブソン循環は加速することが多くの気候モデルに より予測されている。その主な原因として、温暖化により亜熱帯偏西風ジェットが強化かつ上 方変位し、その結果ロスビー波の砕波による摩擦力がより高高度、より赤道側で強化されるた めであると議論されている。ただし、モデル内でパラメタ化されている山岳波とそれ以外の波 とのトレンドへの貢献度の違い、定常波(stationary waves)と非定常波(transient waves)との 貢献度の違いなどについて、モデル間で定量的な違いがあり、今後さらなる研究が必要である。 ブリューワ・ドブソン循環の加速により、下部成層圏のオゾンは熱帯で減少し中高緯度で増加 することが予想される。さらにこうしたオゾンの変化が、放射過程、気温、東西風分布の変化 を通して、波と平均流の相互作用過程を変化させ、ブリューワ・ドブソン循環に変化をもたら すと考えられる。

観測によるブリューワ・ドブソン循環の長期変化の検出は容易ではない。その理由は、長期 変化はあっても小さいため自然変動との区別が難しいこと、ブリューワ・ドブソン循環の直接 測定は不可能で間接的にしか見積もることができないことである。とはいえ、近年、様々な気 温観測データセット、準二年振動の振幅、オゾンや水蒸気や他の様々な化学種の観測データ、 二酸化炭素や六フッ化硫黄の観測データに基づいた大気年代(age of air、熱帯対流圏界面を通 過してからその地点に至るまでの時間)の推定値、様々な再解析データなどを用いて、ブリュ ーワ・ドブソン循環の長期変化が見積もられてきている。その結果、shallow branch のうちの熱 帯の上昇流については複数、異種の観測データから加速傾向にあることが分かっており、これ は気候モデルの結果とも整合的である。いっぽう、deep branch、中部上部成層圏については観 測データにより結果はまちまちであり、不確かさが大きい。

図 1-資-5 ブリューワ・ドブソン循環のふたつの経路、浅い経路(shallow branch)と 深い経路(deep branch)の模式図。

横軸は緯度、縦軸は高度。夏至・冬至の時期の様子。陰影で、北半球冬季の東西平均したオゾン濃度(分圧)を示す(濃い色ほど濃度が高い)。また、点線で、対流圏界面の位置を示す。

(出典) Scientific Assessment of Ozone Depletion: 2014 (WMO, 2014)

参考資料 5. オゾン層観測手法の種類

ブリューワー分光光度計、ドブソン分光光度計等

(全量観測)

ブリューワー分光光度計やドブソン分光光度計によって、オゾン全量を測定することができ る。ブリューワー分光光度計は、直達又は天空から散乱された太陽紫外線を回折格子によって 分光し、オゾンに強く吸収される波長の光と比較的吸収が少ない波長の光の強度比を測定する ことにより、地上から大気上端までの気柱に含まれるオゾンの総量(オゾン全量)を求める。 ドブソン分光光度計は、プリズムを用いて分光を行い、同様の測定を行う。

これらのほかの測定器として、2つのバンドパス・フィルターにより分光するフィルター式 分光光度計があり、旧ソ連圏で使用されている。

(反転観測)

ブリューワー分光光度計又はドブソン分光光度計を用いてオゾンの高度分布を求める手法 で、天頂方向から入射する光の強度比を2種類の波長で測定する。この場合、大気に入射した 太陽光のうち、空気分子で散乱され真下に向かったものが測定される。どの高度で散乱された 光が卓越するかは、太陽天頂角と波長に依存する。これらの関係は、太陽天頂角が大きいほど 高度依存性が強くなるので、いくつかの異なる太陽天頂角での測定から、オゾンの高度層ごと の濃度が算出される。

オゾンゾンデ

オゾンゾンデはゴム気球に測定器を取り付けて飛揚させ、各高度で測定したデータを無線で 地上に送信するもので、地上から高度 35km 位までの間のオゾン濃度を測定することができ る。定常的に使われているオゾンゾンデの測定原理は、電気化学法と呼ばれるものである。ヨ ウ化カリウム(KI)溶液にオゾンを含む空気を通し、ヨウ化カリウムとオゾンの反応で生じる ヨウ素分子が陰極電子と作用してできる陰イオンによる電流を測定する。この場合、反応した オゾンの数密度に比例した電流が得られるので、空気中のオゾン濃度がわかる。

オゾンライダー

ライダー(レーザーレーダー)はパルスレーザー光を大気に発射し、空気分子、エアロゾル、 雲などによる反射光(後方散乱光)を検出する手法で、レーザー光の発射と受信の時間差から 散乱物質までの距離が求まる。ブリューワー分光光度計やドブソン分光光度計が太陽紫外線を 光源としてオゾンによる吸光を測定するのに対し、オゾンライダーでは自らがオゾンの光吸収 帯が存在する波長域の紫外レーザー光を発して、オゾンによるその吸収の大きさを測定するこ とで、地表面から散乱地点までの高度範囲に存在するオゾン密度を求める。異なる高度からの 散乱光における光吸収の大きさを比較することで、オゾンの高度分布を求めることができる。

具体的には、オゾンによる吸収の大きな波長と比較的吸収の小さな波長のレーザーパルス光 を大気中に発射する。レーザー光は空気分子などで散乱されるので、後方に散乱される光を光 学望遠鏡(受光望遠鏡)で受信し、パルスを発してからの時間遅れの関数として記録する。時 間の遅れからは距離(高度)の情報が得られ、2つの波長の信号強度の違いにより地上からそ の高度までのオゾンによる光の減衰(積分された吸収量)がわかる。したがって、一定の演算 処理によってオゾン密度の高度分布が計算される。

これまで、米、仏、日本等で開発されてきたオゾンライダーによれば、高度 40~50km の上 部成層圏までの測定を、2~4 時間の測定時間をかけることにより高度分解能 1~4km で行え る。

ミリ波センサー

オゾンからの熱放射をミリ波帯で測定するもので、オゾン分子の回転状態遷移によって生じ るスペクトル線の輪郭からオゾンの高度分布に関する情報が得られる。大気の高い高度から発 せられるスペクトル線の輪郭は、幅の狭いスペクトルとなるが、高度が下がると空気分子との 衝突のためスペクトル幅が広がる。測定されるスペクトルは、これらの重ね合わせである。気 温・気圧の高度分布がわかっていれば、各高度に対するスペクトルの形状は計算されるので、 オゾンの高度分布を算出することができる。

ミリ波センサーは、昼夜を問わず観測できるという利点がある。高度 70~80km までの高度 分布を分解能 10km 程度、5~20 分程度で測定できる。

人工衛星センサー

すべての気体成分は、それぞれ固有の放射・吸収スペクトルを有していることから、適切な 波長を選んで、大気の放射・吸収の測定を行うことで、成分別の濃度を遠隔的に測定すること ができる。衛星に搭載されるオゾン観測センサーとしては、オゾンの発する赤外放射やミリ波 放射を測定する方式(放射測定法)と、オゾンによる太陽光の吸収を測定する方式(吸光測定 法)とに大別できる。後者にはさらに、太陽光を直接の光源として地球周縁大気を通過する際 の吸収を測定する方法(太陽掩蔽法)と、地球大気による太陽光の散乱光を測定する方法(後 方散乱法)とがある。

放射測定法に基づくセンサーにも、地球周縁方向を測定対象とする方法と、衛星直下を測定 方向とする方法がある。前者の代表例としては、LIMS、CLAES、MLSに加え、日本の測器と してSMILES、また後者には、同じく日本の測器IMGがある。

太陽掩蔽法では、太陽とセンサーの位置関係によって主たる吸収を受ける高度が異なること を利用して、高度分布の測定を高精度に行うことができる。太陽掩蔽法の代表例としては、 SAGE、SAGE II、HALOEに加え、日本の測器としてILAS、ILAS-IIが挙げられる。後方散乱 法の場合には、空気分子で後方散乱された太陽紫外線強度をいくつかの波長で測定する。波長 によって大気層への紫外線の侵入高度が異なることを利用して、オゾン高度分布又は全量を求 める。後方散乱法としては、TOMS、SBUV/2、GOME等が代表的である。

参考資料 6. オゾン層の観測ネットワーク

全球大気監視計画(GAW 計画)

国際オゾン委員会(IOC)は、1957~1958年の国際地球観測年(IGY)に際して各国の気象 機関にオゾン観測の実施を呼びかけ、これにより全地球規模でオゾン観測が行われるようにな った。オゾン層破壊が懸念されるようになって、オゾン層のモニタリングの重要性が再認識さ れ、WMOは、1981年にこれまでの観測所網を全球オゾン観測システム(GO₃OS: Global Ozone Observing System)として整備した。

また、オゾン層破壊、地球温暖化等の地球環境問題の顕在化に伴い、オゾン、温室効果ガス などの大気微量成分を地球規模で観測し、データの収集、管理、提供を行う体制の実現が必要 になったことから、WMO は 1989 年に既存の観測網である GO₃OS 及び大気バックグランド 汚染監視網(BAPMoN: Background Air Pollution Monitoring Network)を基礎とした全球大 気監視(GAW)計画を発足させた。

大気組成変化検出のためのネットワーク(NDACC)

成層圏及び対流圏大気組成変化の検出、衛星観測データの検証、オゾン層や大気組成変動の メカニズムの理解を目的として、ライダー、ミリ波放射計、フーリエ変換赤外分光計、可視・ 紫外分光計等の地上ベースの遠隔測定によるモニタリングステーションを北極域、北半球中緯 度、熱帯、南半球中緯度及び南極大陸に配備するプロジェクトが国際的に進められている。

我が国は、運営委員会に参加している他、ニュージーランドのローダーにおける気象庁気象 研究所によるエアロゾルライダー、北海道陸別町における名古屋大学・国立環境研究所による ミリ波オゾン放射計、赤外分光計観測等を行っている。

参考資料7.オゾンデータの管理・公表

気象庁によるデータ収集・管理・公表

我が国が収集した札幌、つくば、那覇、南極昭和基地におけるオゾン観測データは、気象庁 大気海洋部環境・海洋気象課に集められ、データチェックを経た後、毎月 20 日頃に気象庁ホ ームページ地球環境のデータバンクの「オゾン層・紫外線のデータ」

(https://www.data.jma.go.jp/env/ozonehp/diag_o3uv.html)の中で各地のオゾン全量の経過 等について公表される。これらの観測による成果については、毎年年次報告として公表してお り、「オゾン層・紫外線の年のまとめ」「大気・海洋環境観測年報」が気象庁ホームページで公 表されている。

WOUDC によるデータ収集・管理・公表

日本を含め世界各地から収集したオゾンデータは、カナダにある WMO の世界オゾン・紫外 線資料センター(WOUDC)に送付され、品質管理が行われる。また、反転観測値については、 すべての観測点のデータを同一方式で処理して高度層ごとのオゾン量を算出している。

これらの結果は、WOUDCに保存されるとともに、「世界のオゾンデータ(Ozone Data for the World)」としてインターネットで公表され、世界各国に還元されている。

このほか、NASA やドイツ航空宇宙センター(DLR)が、TOMS データや GOME・2 データ 等の衛星による観測データをインターネット上で公開している。

参考資料8. 解析に用いた衛星観測オゾンデータ*

衛星による観測データとしては、ニンバス7、メテオール3、アースプローブの3機の衛星 のオゾン全量マッピング分光計(TOMS; Total Ozone Mapping Spectrometer)のデータと、 オーラ衛星のオゾン監視装置(OMI; Ozone Monitoring Instrument)のデータと、スオミ NPP 衛星のオゾン全量と鉛直プロファイル観測装置(OMPS; Ozone Mapping and Profiler Suite) を主に使用した。ニンバス7とメテオール3両衛星のデータについては、アースプローブ衛星 に用いられている処理方法(ver.8)で計算されたものを利用した。また、アースプローブ衛星 のTOMSデータは2007年8月に公開された修正版を利用した。オーラ衛星のOMIデータに ついては ver.8.5のデータに地上観測との差異がみられたため(図1・資・6)、2005年1月から 2007年11月分までは ver.8を用いた。2007年12月以降は ver.8.5のデータのみしか入手で きないため ver.8.5を使用している。ただし、メテオール3衛星以後アースプローブ衛星によ る観測が始まるまでの一部の期間、およびオゾンの長期変化に関連した解析の一部については、 ノア衛星搭載のタイロス実用型鉛直サウンダ(TOVS; TIROS Operational Vertical Sounder) の高分解能赤外放射計による世界のオゾン全量データおよび太陽光後方散乱紫外線計

(SBUV/2; Solar Backscatter UltraViolet)による世界のオゾン全量データを使用した。各デ ータとその使用期間は表 1-資-1 のとおり。なお、本文中の図のキャプションでは、TOMS、 OMI および OMPS によるオゾン全量データを用いたことが明らかな場合は、衛星・装置名は記 載せず単に「NASA 提供のデータをもとに気象庁で作成」とした。

なお、解析データとしては利用していないが、OMI ver. 8.5 のオゾン全量のバイアス補正を 行うために、NASA が作成した SBUV (ver. 8.6) Merged Ozone Data Sets を利用した (NASA, 2012)。

公Ⅰ員Ⅰ 府们に用	表	1-資-1	解析に用い	ヽた衛星デー	-タ
-----------	---	-------	-------	--------	----

衛星名	ニンバス 7	メテオール 3	アースプローブ	オーラ	スオミ NPP	ノア	ノア
国/機関	米国 /NASA	旧・ソ連	米国 /NASA	米国 /NASA	米国/NASA・ NOAA	米国 /NOAA	米国 /NOAA
観測装置名	TOMS	TOMS	TOMS	OMI	OMPS	TOVS	SBUV/2
期間	1978.11 - 1993.4	$1993.5 - \\1994.11$	1996.7 - 2004.12	2005.1	2016.1-	1995	1995

米国航空宇宙局(NASA; National Aeronautics and Space Administration) 米国海洋大気庁(NOAA; National Oceanic and Atmospheric Administration)

(出典) 気象庁 HP (https://www.data.jma.go.jp/env/ozonehp/3-15ozone_observe.html#sat)

* 気象庁「オゾン層・紫外線の年のまとめ(2018年)」より引用、一部改変

衛星によるオゾン全量観測データの地上観測との比較

衛星データの長期的な安定性をみるため、TOMSおよびOMIによる観測値と、北緯30度から 北緯60度の領域にある地上の観測地点における観測値との月平均値による比較結果を図1-資-6に示す。これによれば、1979~1993年のニンバス7衛星のTOMSデータは、地上観測値に比 べて約1%値が高い傾向である。1993年5月以降のメテオール3およびアースプローブ衛星の TOMSデータは、ばらつきが大きく、概ね地上観測値に比べて低い。一方、2005年以降、TOMS の後継としてOMIのデータを利用しているが、バージョン変更後のデータであるOMI ver. 8.5 のデータは、ばらつきは少ないものの、-2~-1%程度の地上観測値との偏差がある。ver.8.5 とver. 8のデータの存在する期間(2005年1月~2007年11月)で、帯状平均した緯度ごとのデ ータについて比較すると、両者のオゾン全量の差は、緯度や月によって大きさが一致する傾向 がある(「オゾン層観測報告:2008」付録1-2図A1-5参照)。この期間のデータから月別・緯度 別に両者間のバイアス補正値を算出した。しかし、OMI ver. 8.5のデータと北半球中緯度の地 上観測との差の傾向が、2007年12月以後はそれ以前より差が小さくなっており、傾向が異なっ ている。このため、NASAが作成したSBUV(ver. 8.6) Merged Ozone Data Sets(以下、マ ージデータとする)の帯状平均値を用いてバイアス補正値の調整を行った。具体的には、2005 年1月~2007年11月のマージデータとOMI ver. 8の差の平均と、2007年12月~2011年のマージ データとOMI ver. 8.5(バイアス補正済)の差の平均が同一となるように、2007年12月以降の OMI ver. 8.5 (バイアス補正済) データを緯度毎にさらに補正した。本報告では、緯度帯別の 長期的な変化傾向を解析する際には、2007年12月以降のver. 8.5のデータにマージデータで調 整したバイアス補正を適用した。また、1993年5月~1994年11月の衛星データ(メテオール3 衛星によるオゾン全量)は、オゾン全量の地上観測値からの差のばらつきが大きいため、長期 変化傾向の計算から除外している。

図1-資-6 衛星データと地上観測データの比較

北半球中緯度帯(北緯30度-60度)のTOMSおよびOMIによる観測値(月平均値)と地上観測値 との偏差(%)の推移。地上の観測地点に対応する衛星データを求め比較した。オーラ衛星期間の ●はOMI ver. 8、○はOMI ver. 8.5のデータ。各月の比較地点数は20~60地点。

(出典)気象庁 オゾン層・紫外線の年のまとめ(2018年)

参考資料 9. 2021 年の月平均オゾン全量と偏差(%)の地球規模の分布

月平均オゾン全量・偏差(%)の地球規模の分布図を以下に示す(図1-資-7)。月平均オゾン 全量(左図)の等値線間隔は15matm-cm、偏差(%)(右図)については5%である。陰影部 は太陽高度角の関係で観測できない領域を示す。NASA提供の衛星データをもとに気象庁が作 成した。

(出典) 気象庁提供

(出典) 気象庁提供

参考資料 10. 1979~2021 年の南半球の月平均オゾン全量分布(10月)

220m atm-cm 以下のオゾンホールの領域を点域で示しており、オゾンホールの経年変化が わかる。NASA 及び NOAA 提供の衛星データをもとに気象庁が作成した。図中の●印は南極 昭和基地を表す。

図 1-資-8(1) 10月の南半球月平均オゾン全量分布図(1979~1992年) (出典)気象庁提供

図 1-資-8(2) 10月の南半球月平均オゾン全量分布図(1993~2010年) (出典)気象庁提供

図 1-資-8 (3) 10 月の南半球月平均オゾン全量分布図(2011~2021 年)

(出典) 気象庁提供

参考資料11. 地上観測による南極域でのオゾン全量推移

南極昭和基地(●印)、ハレー(△印)、ベルナドスキ/ファラデイ(×印)、ロゼラ(□印) における2019年と2020年の8~12月のオゾン全量観測値を図1-資-5に示す。また、図中にはオゾ ンホールの目安である220 m atm-cmを破線で示した。

2019年は8月末に成層圏突然昇温が発生し、オゾンホール形成で重要となる極成層圏雲が形成 される領域が限定的となり、オゾンホール特有の化学反応によるオゾン層破壊の進行が抑制され たことに加え、極渦が弱く、また不安定であったため、11月10日のオゾンホールの消滅までの 期間でも、ハレーを除く南極昭和基地も含めた3つの地上観測地点ではオゾン全量は変動が激し く、オゾン全量は全般に高めであった。

一方、2020年は極渦が安定な円形を維持し、その規模も大きい状態が長期間継続したため、4 つの地上観測地点はオゾンホール内に位置することが多かった。特に、南極昭和基地やハレーは 長期間継続してオゾンホール内に位置することが多かったため、12月中旬ごろまで継続的にオゾ ン全量の低い状態が続いた。ただし、南極半島に位置するベルナドスキ/ファラディとロゼラでは、 9月~11月の期間において時々オゾンホール外に位置してオゾン全量が急増する様子が見られた。

2021 年は 2020 年同様に極渦が安定しており、4 つの地上観測地点はオゾンホール内に位置することが多く、オゾン全量の低い値が継続した。ただし 2020 年とは異なり、半島に位置するベルナドスキ/ファラディとロゼラにおいて、オゾン全量が急増するケースが非常に少なかった。2020年と 2021 年のこの違いは、図 1-資-8 (3)の 10 月平均のオゾン全量分布図からもわかる。

参考資料 12. オゾンの高度分布とその変動一地上からの観測 各高度におけるオゾン変動

図1-資-10は、国立環境研究所オゾンライダーによって測定した、1988年9月から2010年 3月までの間の高度毎のオゾン濃度(数密度)変動をプロットしたものである。この図には、 気象庁高層気象台においてオゾンゾンデによって観測されたオゾン濃度もあわせて示してあ り、両観測データは一致している。

それぞれの高度レベルにおいて季節変動が見られるが、その特徴は高度によって異なっている。高度 15km、20km では春に極大で夏から秋にかけて極小、30km、35km では夏に極大で 冬に極小となっている。

図 1-資-10 各高度におけるオゾン変動(1988 年 9 月~2010 年 3 月)

国立環境研究所オゾンライダーによって測定。気象庁高層気象台(茨城県つくば市)によってオゾンゾンデを 用いて観測された値をともにプロットした。オゾンゾンデデータは WOUDC のデータベースに集積されたも のを用いた。なお、10¹⁸分子/m³のオゾン数密度は、成層圏の気温条件では約 3mPa のオゾン分圧に相当する。 (出典)国立環境研究所地球環境研究センター提供

高度 30~40km におけるオゾントレンド

図1-資・11における各高度のオゾン濃度の時間変化には、季節変動が強く表れており、QBO、 太陽活動の影響のあることが分かっている。オゾン層破壊物質等によるオゾン層への影響を検 討するには、まずこれらの周期的な自然変動を除去したオゾンの長期トレンドを求めることが 必要である。そこでまず、オゾンライダー及び衛星センサーSAGEIIによって観測された 1988 ~2005年の期間の各高度のオゾン濃度の各平均値を求め、この値でそれぞれの年の月平均オ ゾン濃度を除することによって、季節変動を除去したオゾン濃度比偏差を求めた。さらに、30 ~40kmの高度について平均したオゾン濃度比偏差からQBO及び太陽活動の影響を除去した オゾン濃度比偏差を求めた(図1-資・11)。●がオゾンライダー、□がSAGEIIの値を示す。両 者共に1990年代には減少傾向を示し、それ以降平坦化している。1988~1997年末の間のオ ゾン濃度比偏差の減少トレンドは、オゾンライダーについては(-0.60±0.05)/年、SAGEII については(-0.52±0.04)/年であり大きな差はなかった。1998年以降については両者共に ほぼ平坦であり、有意なトレンドはなかった。

図 1-資-11 高度 30~40km のオゾン濃度比偏差(1988~2005 年)

国立環境研究所オゾンライダー及び NASA の衛星センサーSAGEII によって測定したオゾン濃度を基に作成 した。図中の数値は国立環境研究所のオゾンライダーによって観測した 1988 年 9 月~1997 年 12 月の間のオ ゾン濃度比偏差のトレンド

(出典) Tatarov et al., International Journal of Remote Sensing, Vol. 30, No. 15, 2009.

日本の反転観測データの再評価への活用

気象庁によって実施されているドブソン分光光度計を用いた反転観測によるオゾン高度分布 データの再評価・再解析が行われ、新しいデータセットが作成された。国立環境研究所のオゾ ンライダーデータは高層気象台によるオゾンゾンデ観測データと共に、再評価における誤差解 析の際の参照データとして用いられた(Miyagawa et al., 2009)。

参考資料 13. つくばにおける月別オゾン全量変化と高度別オゾン分圧変化の関係(2021年)

つくばにおける 2021 年の月平均オゾン全量の変化を、1994~2008 年の平均値と比較して 図 1-3・21(p.39)に示す。2021 年の月平均値は過去の平均値より 1 月に少なく、7,9,11 月に多 かったことが見られる。つくばにおけるオゾン全量の月平均値の変動原因を明らかにするため には、どの高度のオゾン分圧の変化がオゾン全量の増減に寄与しているかを、明らかにする事 が有効と思われる。そこで、図 1-資・12 (p.86) につくばにおける 2021 年のオゾン分圧の高度 分布とその規格化偏差の月別変化を示す。

規格化偏差とは、参照値からの偏差が、参照値の標準偏差によって表される通常の変動の大きさと比較してどの程度大きいかを示す数値である。2021年の各月のオゾン分圧(P_{2021})の規格化偏差は、具体的には1994~2008年のオゾン分圧の月平均値を参照値(Pref)とし、その標準偏差(σref)とすると、($P_{2021} - P_{ref}$)/ σ_{ref} 、として与えられる。

規格化偏差図(図1-資-12下図)で1994~2008年の平均値からの差が+1より大きい場合 を濃い灰色の領域(オゾン分圧が多い領域)、-1より小さい場合を薄い灰色の領域(オゾン分 圧が少ない領域)として表示している。

オゾン分圧の高度分布(図1-資-12上図)を見ると、1年を通して高度18~28 km 付近にオ ゾン分圧の高い層があり、中でも1~4月の高度18~24km 付近は高い値が観測された。オゾ ン分圧の高度毎の月別累年平均値からの規格化偏差(下図)をみると、月平均オゾン全量(p.39 図1-3-21)において「少ない」となった1月は高度4~18km 付近や28~32km 付近でやや大 きな負偏差となり、これがオゾン全量の減少をもたらしていることが分かった。一方、月平均 オゾン全量(p.39 図1-3-21)が「多い」となった9月は高度4~14km 付近でやや大きな正 偏差、11月は高度8~10km 付近で大きな正偏差となり、これがオゾン全量の増加をもたらし ていることが分かった。その他、10月は月平均オゾン全量(p.39 図1-3-21))で「並」であっ たが、高度6~8km 付近で大きな正偏差、高度24~28 km 付近で顕著な負偏差となっており、 これらがオゾン全量の増減を打ち消しあっていることが分かった。

図1-資-12 つくばの月別のオゾン分圧とその規格化偏差の高度分布(2021年) つくばのオゾンゾンデ観測によるオゾン分圧・偏差の高度分布図。オゾン分圧図(上)は個々の観測値を用い、 規格化偏差図(下)は月平均値から作成。札幌と那覇のオゾンゾンデ観測は2018年1月に終了した。 なお、7月は観測を行っていないためデータなし。

(出典) 気象庁提供

参考資料 14. 南極昭和基地における月別オゾン全量変化と高度別オゾン分圧変化の関係(2021年)

南極昭和基地上空における 2021 年のオゾン分圧の高度分布とその規格化偏差の月別変化を 示す(図 1-資-13)。規格化偏差図(下図)で 1994~2008 年の平均値からの差が+1 より大き い場合を濃い灰色の領域(オゾン分圧が多い領域)、-1 より小さい場合を薄い灰色の領域(オ ゾン分圧が少ない領域)として表示している。

南極オゾンホールの鉛直分布の特徴は、通常オゾン分圧が高い高度 14~22km 付近における オゾンが大きく減少するということである。

南極昭和基地における 2021 年のオゾン分圧は、図 1-資-13(上図)に見られるように、9月 中旬にはオゾンホールに被われたことにより高度 24km 以下で顕著に低くなり、ほぼ全ての高 度で 5mPa 以下となった。それ以降も低い状態が継続したが、10月下旬頃から高度 18~28km 付近でオゾン分圧が高くなり、12月上旬には、高度 18~22km 付近で急激にオゾン分圧が高 くなった。月平均値の規格化偏差(下図)をみると、月平均オゾン全量(図 1-3-10 (p.27))に おいて「多い」となった 2月は高度 24~28km 付近、8月は高度 16~28km 付近でやや大きな 正偏差となった。その他、オゾン全量が「少ない」3月の高度 10~12km 付近や 16~18km 付 近、12月の高度 10km 付近で顕著な負偏差が見られ、オゾン全量の平均値からの減少に対応 している。

図1-資-13 南極昭和基地の月別のオゾン分圧とその規格化偏差の高度分布(2021年) 南極昭和基地のオゾンゾンデ観測によるオゾン分圧・規格化偏差図。オゾン分圧図(上)は個々の観測値を用 い、規格化偏差図(下)は月平均値から作成。規格化偏差は月平均値の1994~2008年の平均値からの偏差を 標準偏差で割った値。なお、観測データのない高度については、前後の観測で得られたオゾン分圧から内挿処 理を行っている。
(出典)気象庁提供

参考資料 15. 成層圏数値モデルー化学気候モデルと化学輸送モデル

成層圏の注目する領域のオゾン量は、その領域の中での化学反応によって生成・消失するオ ゾン量並びに、他の領域からその領域に輸送されてくるオゾン量とその領域から他の領域に輸 送されるオゾン量のバランスによって決まる。この内、化学的な生成あるいは消失の速度は、 反応に関与する物質の濃度、成層圏エアロゾルが関与する場合にはエアロゾルの表面積・体積・ 組成、光が関与する場合は太陽光強度の波長分布に依存する。オゾン濃度・分布に影響するも う一つの要因である輸送量・輸送速度は注目している領域付近での風速分布やオゾンの濃度勾 配に関連する。

オゾン濃度や分布に影響する化学反応や物質輸送の速度は、気温や圧力にも依存する。一方 で、気温や圧力は、化学反応や大気の運動によってもコントロールされている。この様に成層 圏での力学と化学は放射による加熱・冷却と密接に結びつている。そこで、オゾン層破壊を扱 う成層圏モデルは、一般に次の概念図で示す様な構成・考え方に基づいて作られる。

上記の概念に基づいた成層圏モデルは、大きくは、化学気候モデル(Chemistry-Climate Model:CCM)と化学輸送モデル(Chemical Transport Model:CTM)の2つに分類される。 それぞれの特徴は次の通りである。 化学気候モデル:

化学成分の分布、気温分布、風速分布をモデル内で直接計算することで、例えば化学成分 の量が変化→放射フラックスの変化→気温分布の変化→化学成分の生成量・消失量の変化、 といった様なフィードバックを扱うことが可能であり、例えば CO2の増加に伴うオゾン層 の応答などを議論する際に有効である。

化学輸送モデル:

物質輸送に係わる風速分布や気温分布を、気象観測値や客観解析データなどを利用して外 部変数として与えて、化学成分分布などを計算する。例えばオゾンの生成・消滅に係わる 化学プロセスを含む場合と含まない場合(トレーサー実験)との差から、化学プロセスに よるオゾンの生成量・破壊量を議論する際に有効である。

図 1-資-15 化学気候モデルと化学輸送モデルの入力変数と予報変数の違い 外から中に向かって矢印で示された部分(「太陽放射」「風速分布・気温分布」「フロン・ハロン・GHG など」 「海面水温」)は各モデルの入力変数であり、四角で囲った変数は予報変数である。

第2部 特定物質等の大気中濃度

1. オゾン層破壊物質の種類と特性

オゾン層破壊物質

人間活動によって塩素原子や臭素原子を含有するオゾン層破壊物質が排出されている。こ れらの物質の多くは、非常に安定で反応性がなく、雨や海水にも溶解しないため、大気中の 寿命が極めて長く、下層の対流圏大気中に蓄積する(大気中寿命の短いものは一部が大気中 に蓄積する)。これらは非常にゆっくりではあるが大気の運動を通じて成層圏に輸送され、 そこでオゾン層で遮蔽されない短波長の太陽紫外線によって分解され、反応性の高い物質に 変換される。生じた反応性物質が、成層圏オゾンを連鎖反応により破壊する。

塩素系オゾン層破壊物質には、主としてCFC、四塩化炭素、1,1,1-トリクロロエタン(別名 メチルクロロホルム)があり、影響は小さいがHCFC、塩化メチルなどがある。CFCは、炭 素、塩素及びフッ素原子のみから構成される物質であり、冷凍機や空調機器の冷媒、発泡 剤、エアロゾル噴射剤、金属や電子機器の洗浄剤などとして、多くの用途に使われてきた。 四塩化炭素はCFCの製造原料として、1,1,1-トリクロロエタンは金属等の洗浄用溶剤として使 われてきた。

臭素系オゾン層破壊物質では、反応性や水溶性のないハロンが主なものであり、その他臭 素系の人工物質や臭化メチルがある。ハロンは消火剤として、臭化メチルは農業用薫蒸剤等 として使用されている。

オゾン層保護法における特定物質

「オゾン層を破壊する物質に関するモントリオール議定書」(1987年)によって規制対象と されたオゾン層破壊物質は、「特定物質の規制等によるオゾン層の保護に関する法律」におい て「特定物質」として規制されている。具体的には、CFC、HCFC、ハロン、四塩化炭素、1,1,1-トリクロロエタン、HBFC、ブロモクロロメタン、臭化メチルである。各物質の特徴と用途に ついては第2部参考資料1 (p.125)を参照。なお、2016年10月のモントリオール議定書キ ガリ改正を受けて、2018年にオゾン層保護法が改正され、新たに「特定物質代替物質」として HFC が規制されることとなった。同法はキガリ改正が発効する2019年1月1日に施行され た。

成層圏中の塩素・臭素の発生源

図 2-1-1 は、塩素・臭素を含む主要な起源物質(有機塩素・臭素化合物)が 1996 年及び 2016 年の成層圏中の塩素・臭素の全量にそれぞれどの程度寄与しているかを示している。ただし同 図では、塩素系化合物(左)と臭素系化合物(右)で縦軸の化合物量のフルスケールが大きく 異なっており、成層圏中の全臭素量は全塩素量の 100 分の 1 以下である。なお、起源物質に占 める自然発生源の割合は、塩素系化学物の場合は 20%以下であるのに対し、臭素系化合物の場 合は約半分である。

塩素源については、成層圏に達する塩素のほとんどを人間活動が占める。CFC は人間活動に よって排出される塩素系オゾン層破壊物質のうち最も多量にあるものである。塩化メチルは大 部分が自然発生源である。CFC の代替物質である HCFC による塩素系化合物中の割合は小さ いが、その大気中濃度は近年急増している。

臭素源については、全起源物質のうち約半分を占めているハロンなどの人為発生源のオゾン

層破壊物質の大気中濃度が、1996年から 2016年の間に約 20%減少している。臭素系オゾン 層破壊物質量の減少の多くは人間活動由来の臭化メチルの削減によるものである。

図 2-1-1 1993、1998 年及び 2016 年の成層圏中の塩素・臭素の主要な起源物質 大気中のガスの濃度の単位として「1 兆分の 1」(ppt)を使用している。1ppt は、1 兆個の大気分子が存在す る中に着目するガス分子が 1 個の割合で存在することを示す。

(出典) Scientific Assessment of Ozone Depletion: 2018 (WMO, 2018)

主なオゾン層破壊物質の大気中寿命・オゾン層破壊係数

主なオゾン層破壊物質の大気中の寿命や成層圏オゾン破壊への影響を表2-1-1に示す(詳細 は巻末資料P195~196を参照)。個々のオゾン層破壊物質の成層圏オゾン破壊への影響は「オゾ ン層破壊係数(Ozone Depletion Potential: ODP)」で示されている。個々のオゾン層破壊物 質のODP値は一定重量の物質が大気に放出された際のオゾン層への影響を、同量のCFC-11が 放出された際のオゾン層への影響との相対値(CFC-11のODP値=1)として、物質ごとに計算 される。

		大気中寿命(年)	オゾン層破壊係数
	$CFC-12$ (CCl_2F_2)	102	0.73
塩素系	$CFC-113$ (CCl_2FCClF_2)	93	0.81
	$CFC-11$ (CCl_3F)	52	1
	四塩化炭素(CCl4)	32	0.72
	HCFC-22 (CHClF $_2$)	12	0.034
	$HCFC-141b$ (CH_3CCl_2F)	9.4	0.102
	HCFC-142b (CH_3CClF_2)	18	0.057
	1,1,1-トリクロロエタン(CH ₃ CCl ₃)	5	0.14
	塩化メチル(CH ₃ Cl)	1	0.57
臭素系	ハロン1301 (CBrF ₃)	72	15.2
	ハロン1211 (CBrClF ₂)	16	6.9
	臭化メチル(CH ₃ Br)	0.8	0.57
	極短寿命ガス(CHBr ₃ など)	< 0.5	b
フッ素系	HFC-134a (CH ₂ FCF ₃)	14	0

表 2-1-1 主なオゾン層破壊物質等の大気中寿命、オゾン層破壊係数 *

a 人間活動及び自然発生源の両方を含む

b 推計が不確実

(出典) Scientific Assessment of Ozone Depletion: 2018 (WMO, 2018)

2. 特定物質等の観測状況

(a) 大気試料の採取法・分析法

特定物質の分析を目的とした大気試料の採取は、一般に、高真空にした超清浄の金属製容器 に大気をそのまま採取するグラブサンプリング法、加圧状態まで試料採取が必要な場合は、メ タルベローズポンプを用いて加圧を行い採取する加圧採取法、又は液体へリウムで冷却して採 取するクライオジェニックサンプリング法により行われる。連続測定装置では、一定量の大気 を低温カラムに通し、大気中成分を濃縮捕集する。

特定物質の分析には、ECD(電子捕獲型検出器)がハロゲンに対して比較的高い感度と選択 性を示すことから ECDを備えたガスクロマトグラフ、又は種々の物質が同定できるガスクロ マトグラフ/質量分析計(GC/MS)が用いられる。

塩素原子や臭素原子を含む特定物質の中には、試料採取容器(キャニスター)、測定装置配管 及び標準ガス容器内で化学変化や吸着による影響を受ける物質(四塩化炭素、臭化メチル等) がある。このため測定装置においては、配管のデッドボリュームを極力少なくし、内面に不活 性処理を施した配管・部品を使用する事が望ましい。また同様に、特定物質の定量を行う際に 不可欠となる標準ガスの安定性についても注意が必要であり、国際的に信頼度の高い研究機関 との相互検定も重要である。

(b) 大気試料の採取地点

特定物質の発生源からの局地的な汚染の影響がない大気(バックグラウンド大気)について 測定を行うことで、地球規模の特定物質の分布や推移を知ることができる。

日本付近では、北海道の根室、稚内周辺などにおいて、気象条件によって局地的汚染のない 北半球中緯度の代表的な大気を採取することができる。

一方、特定物質を都市部などの発生源に近い場所で測定を行うことで、自国における人為発 生の推移を知ることが出来る。一般に、都市部などの発生源に近い場所では、大気中の特定物 質の濃度は通常バックグラウンド濃度よりも高い値になる。このような場所での大気中濃度は、 時間的にも地域的にも変動が大きく、風向・風速などの気象条件や人間の生産活動サイクル(週 末や休日には低くなる)などによって左右されることが多い。

(c) 特定物質の観測体制

我が国では、東京大学において特定物質の大気中濃度を正確かつ精密に分析するための装置 と手法が開発され、1979年(南極昭和基地については1981年)から2010年まで特定物質の 広域分布や経年変化が観測されていた。

環境省は 1988 年から北海道及び川崎市で特定物質の観測を開始している。また特定物質代 替物質として HFCs の観測を 2019 年度から開始している。

国立環境研究所では、2004 年から、波照間島(沖縄県)で、2006 年から落石岬(北海道) において、特定物質を含むハロカーボン類の毎時間連続観測を行っている。

気象庁では、1990年から岩手県三陸町綾里で、また1990年から観測船「凌風丸」によって 北西太平洋における特定物質の観測を行っている。
特定物質等に関する基礎情報

また、多くの都道府県及び政令指定都市においても、1989~1990年頃から特定物質の大気 中濃度の測定が行われている。令和元年7月に環境省が行った調査では、16都道県、5政令指 定都市においてオゾン層破壊物質等の観測が行われている(第2部参考資料6(p.144)参照)。

オゾン層破壊物質の我が国での大気中濃度は、CFC-11 等減少している物質がある一方、 HCFC-22 等増加し続けている物質もあり、今後も観測を続ける必要がある。

なお、世界において行われているオゾン層破壊物質の大気中濃度観測は、主なものとして、 AGAGE、NOAA/ESRL、UCI などがある。

3. 特定物質等の大気中濃度の監視結果

3-1. 特定物質等の大気中のバックグラウンド濃度の状況

3-1-1. 環境省による観測結果

北海道における特定物質等の大気中のバックグラウンド濃度の経年変化

環境省は、1988年から北海道の根室・稚内周辺において、15物質の大気中濃度を測定して いる。測定対象物質は、CFC-11、CFC-12、CFC-113、CFC-114、CFC-115、ハロン 1211、ハ ロン 1301、ハロン 2402、1,1,1-トリクロロエタン、四塩化炭素(1989年~)、HCFC-22 (1992年~)、HCFC-141b(2001年~)、HCFC-142b(1992年~)、臭化メチル(1997 年~)、HFC-134a(2000年~)である。また、2018年にオゾン層保護法が改正され、「特定 物質代替物質」として HFCs が新たに規制されることとなったことを受けて、2019年度から HFCs17物質(HFC-134、HFC-143、HFC-245fa、HFC-365mfc、HFC-227ea、HFC-236cb、 HFC-236ea、HFC-236fa、HFC-245ca、HFC-43-10mee、HFC-32、HFC-125、HFC-143a、 HFC-41、HFC-152、HFC-152a、HFC-23)を測定対象物質としている。

「フロン等オゾン層影響微量ガス等監視調査」について、2015年度の調査から測定装置、試 料採取方法等を変更した。測定装置の更新では、大気試料濃縮装置における試料導入配管など での特定物質の消失の影響が認められたため、配管などのデッドボリュームの削減を行った。 測定装置の更新および改善点の詳細については、参考資料4(p.140)を参照。

測定装置や試料採取方法の更新に伴い、従来の測定との継続性を確認するため、これまでの 測定値も含めて定量性の再検討を行い、標準ガス容器内の特定物質などの濃度変化の確認や国 立環境研究所内で行われているフロン類の測定の相互検定試験を行った。その結果、調査開始 (1989年)から測定装置更新前(2014年)までのCFC-11の測定値が全て10ppt程度低く定 量されていることが判明したため、相互検定試験で得られた測定値に基づいて過去(1989年)

~2014年)の測定値について補正を行った。

測定装置や標準ガスの信頼性が確認出来た段階で、バックグラウンド地域における 2015 年 度試料の再測定及び 2016 年度試料の測定を行った。なお、2015 年度夏期試料の再測定の結 果、一部の物質(HCFC-22、HCFC-141b、臭化メチル)について異常値となり、原因は大気 濃縮装置稼働初期の配管から試料が汚染されたものと考えられたため、15 物質全てについて 欠測とした。

(a) 測定対象 15 物質の大気中のバックグラウンド濃度のトレンド

表 2-3-1 は、特定物質等の大気中のバックグラウンド濃度のトレンドについてまとめたものである。

表 2-3-1	北海道に	こおける特定物質等の大気	中のバックグラウン	ド濃度のトレント	:
		(評価期間)	は原則として 1996	年1月~2021年	12月)
			評価期間(2)	現在の濃度(3)	

物質名	平均年 (p	E間変化量 ⁽¹⁾ optv/年)	評価期間 ⁽²⁾ (~現在) (2021年12月)	現在の濃度 ⁽³⁾ (2021 年 12 月) (pptv)
CFC-11	-2.0	± 0.03	1996年1月~	223
CFC-12	-2.8	± 0.08	2006年1月~(4)	505
CFC -113	-0.58	± 0.01	1996年1月~	70
CFC-114 ⁽⁷⁾	-0.01	±0.002	1996年1月~	15.9
CFC -115	-0.002	±0.003	2003年1月~(4)	8.9
ハロン-1211	-0.11	± 0.003	2006年1月~(4)	3.2
ハロン-1301	0.02	±0.001	2004年1月~(4)	3.6
ハロン-2402	-0.006	±0.0001	1996年1月~	0.39
四塩化炭素	-1.2	±0.03	1996年8月~(5)	78.6
1,1,1-\U/DDDIA/(8)	_	_	1996年1月~(4)	1.1
HCFC-22	6.0	± 0.08	1996年1月~	281
HCFC-141b	0.45	± 0.1	2016年8月~(4)	28.1
HCFC-142b	0.01	±0.04	2015年12月~	23.5
臭化メチル	-0.1	±0.04	2010年12月~(4)	7.2
HFC-134a	5.4	±0.06	2000年8月~(6)	128.7

※2015年度の調査から測定装置、試料採取方法等を変更した。

- (1) 平均年間変化量には±に続く数値により一定の幅を示したが、これは95%以上の確率で、平均年間変化量がこの範囲(95%信頼区間)に収まることを意味する。
- (2) 過去 26 年間(1996 年 1 月~2021 年 12 月)の調査結果に基づく(CFC-12、CFC-115、ハロン-1211、ハロン-1301、四塩化炭素、HCFC-141b、臭化メチル及び HFC-134aの評価期間については(4)~(6)を参照)。
- (3) 表中の「現在の濃度」とは、回帰式から算出される 2020 年 12 月での計算値であり、実測値ではない。
- (4) CFC-12 については濃度の低下が始まったため 200 年1月から、CFC-115 については、濃度の変化傾向が 安定した 2003 年1月から、ハロン-1211 については、濃度の低下傾向が明らかとなった 2006 年1月か ら、ハロン-1301 については、濃度の変化傾向が安定した 2004 年1月から、HCFC-141b については 2016 年8月から、HCFC-142b については 2015 年12月から、臭化メチルについては濃度の変化傾向が安定した 2010 年12月以降の冬期の調査結果のみをそれぞれ評価期間とした。
- (5) 四塩化炭素については、1996年1月及び同3月に測定結果が得られなかったため、1996年8月からを評価期間とした。
- (6) HFC-134a については、測定を開始した 2000 年 8 月からを評価期間とした。
- (7) CFC-114 は異性体(CFC-114a)を含む値とし、平均年間変化量は「CFC-114+CFC-114a」のデータに対する 直線回帰から求めた。
- (8) 1,1,1-トリクロロエタンについては、片対数のグラフから得られた近似式から「現在の濃度」を算出した。直線的な減衰ではないため平均年間変化量は算出していない。

(出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

(b) CFC-11、CFC-12、CFC-113、1,1,1-トリクロロエタン、四塩化炭素の大気中の バックグラウンド濃度の変化

図 2-3-1 に CFC-11、CFC-12、CFC-113、1,1,1-トリクロロエタン、四塩化炭素の測定結果 を示す。このうち、CFC-11、CFC-12、CFC-113 及び四塩化炭素については、濃度変化を見や すくするために、縦方向(濃度)に拡大したものを図 2-3-2 に示す。また、1,1,1-トリクロロエ タンについては、プロットが減衰のカーブを描いているため片対数表示として図 2-3-2 に示す。 図 2-3-2 には測定結果の標準偏差もあわせて示した。CFC-11、CFC-113、四塩化炭素は 1990 年代半ば以降 1%/年前後の割合で減少している(図 2-3-2)。CFC-12 は 1990 年代後半以降 長期間ほぼ横ばいであったが、2006 年頃から減少し始めている(図 2-3-2)。また、1990 年代 前半以降の 1,1,1-トリクロロエタンの減少は著しい(図 2-3-2)。特に 1995 年以降はほぼ単一 指数関数的に減少しており(図 2-3-2 の黒丸)、その減衰時間は 5.6 年と推定される。これは 1,1,1-トリクロロエタンの大気寿命 5.0 年(WMO 2018)と同程度である。

図 2-3-1 北海道における特定物質の大気中のバックグラウンド濃度の経年変化 ※口絵 IV 参照。 ※2015 年度の調査から測定装置、試料採取方法等を変更した。 (出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

図 2-3-2 北海道における CFC-11、CFC-12、CFC-113、四塩化炭素 及び 1,1,1-トリクロロエタンの大気中のバックグラウンド濃度の経年変化 ※図中の各点につけた短い縦線は測定結果の標準偏差を示す。

- ※●は表 2-3-1「北海道における特定物質等の大気中のバックグラウンド濃度のトレンド」に おいて平均年間変化量等を算出するために用いた評価期間の各平均値を示し、○はそれ以外 の平均値を示した。
- ※2015年度の調査から測定装置、試料採取方法等を変更した。
 - (出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

(c) CFC-114 及び CFC-115 の大気中のバックグラウンド濃度の変化

CFC-114 の大気中のバックグラウンド濃度は 16pptv 程度で近年はほとんど変化していない。CFC-115 の大気中のバックグラウンド濃度は 9pptv 程度で、近年は若干の増加が見られる。

図 2-3-3 北海道における CFC-114 及び CFC-115 の大気中のバックグラウンド濃度の 経年変化

※CFC-114 は異性体(CFC-114a)を含む。

※2015年度の調査から測定装置、試料採取方法等を変更した。 (出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

令和3年度監視結果(特定物質等)

(d) ハロン-1211、ハロン-1301 及びハロン-2402 の大気中のバックグラウンド濃度の変化

ハロン-1211 の濃度は 1990 年代に急増してきたが、2000 年代に入って増加傾向が鈍化し、 近年は減少に転じている。ハロン-1301 の大気中のバックグラウンド濃度は継続して増加し続 けていたが、近年その増加はゆるやかになり、2015 年以降は濃度の明瞭な増加は認められな い。一方、ハロン-2402 の大気中のバックグラウンド濃度はわずかであるが減少し続けている。

図 2-3-4 北海道におけるハロン類の大気中のバックグラウンド濃度の経年変化 ※2015 年度の調査から測定装置、試料採取方法等を変更した。 (出典)環境省 令和3度フロン等オゾン層影響微量ガス等監視調査

(e) HCFC-22、HCFC-141b、HCFC-142bの大気中のバックグラウンド濃度の変化 HCFC-22の大気中のバックグラウンド濃度は、調査開始以来増加し続けていたが、近年そ の増加はゆるやかになり、2020年以降は濃度の明瞭な増加は認められない。(図 2-3-5)。HCFC-142bの大気中のバックグラウンド濃度は、調査開始以来増加し続けていたが、近年その増加 はゆるやかになり、2014年以降は濃度の明瞭な増加は認められない。HCFC-141bはここ数年 再び濃度増加に転じる傾向を示している(図 2-3-6)。

図 2-3-5 北海道における HCFC-22 の大気中のバックグラウンド濃度の経年変化 ※2015 年度の調査から測定装置、試料採取方法等を変更した。 (出典) 環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

図 2-3-6 北海道における HCFC-141b、HCFC-142b の大気中のバックグラウンド 濃度の経年変化

※2015 年度の調査から測定装置、試料採取方法等を変更した。 (出典) 環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

(f) HFC-134a の大気中のバックグラウンド濃度の変化

HFC-134aの大気中のバックグラウンド濃度は単調に増加している。平均年間変化量は2000~2005年が約4pptv/年だったのに対し、2012~2021年では約6pptv/年と増加しており、増加率は約5%/年に相当し極めて大きい。

図 2-3-7 北海道における HFC-134a の大気中のバックグラウンド濃度の経年変化 ※2015 年度の調査から測定装置、試料採取方法等を変更した。 (出典) 環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

(g) 臭化メチルの大気中のバックグラウンド濃度の変化

臭化メチルの大気中のバックグラウンド濃度は、モニタリング開始以来毎年わずかながら減少し続けている。また、2011年以降、夏期調査の濃度は不安定に高くなる傾向にあり、その 原因は分かっていない(下図において、夏期調査結果を■で示す)。

図 2-3-8 北海道における臭化メチルの大気中のバックグラウンド濃度の経年変化 ※2015 年度の調査から測定装置、試料採取方法等を変更した。 (出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

3-1-2. 国立環境研究所による観測結果

沖縄県波照間島における特定物質の大気中濃度の経年変化

国立環境研究所では、人為汚染の影響が少ない波照間島(沖縄県)及び落石岬(北海道)に おいて、特定物質を含むハロカーボン類の観測を行っている。このうち、波照間島における CFC-11、CFC-12 及び CFC-113 濃度の経年変化を図 2-3-9 に示す。波照間島は夏季には低緯 度、冬季には中高緯度からの気団の影響を受けやすいため、CFC 濃度にもわずかな季節変動が 見られる。CFC-11 と CFC-113 の濃度は観測開始時(2004 年)から減少傾向にある。CFC-11 については、2014 年頃から大気中濃度の減少速度が鈍化していることに加え、風上地域での 放出を反映した短周期の濃度上昇イベントが頻繁に観測されてきたが、2019 年以降はその頻 度及び強度に顕著な低下が見られた。この原因については p.106~107 の参考記事を参照のこ と。

CFC-12 濃度は 2007 年頃からごく緩やかに減少し、2010 年以降減少傾向が加速している。

図 2-3-9 波照間島で観測された CFC-11、CFC-12 及び CFC-113 濃度の経年変化 国立環境研究所波照間観測ステーションにおける観測結果。低温濃縮/ガスクロマトグラフ・質量分析計(全自動)による毎時間観測データを基に、各月ごとに平均値±1 σから外れるデータを省くステップを2 度繰り返 してベースライン濃度を算出し、月平均値(白丸)とした。なお、観測数が不十分な月については欠測として いる。2017 年 10 月から 12 月は装置のトラブルのため欠測※口絵 IV 参照。口絵では、月平均濃度のみを表 している。

(出典)国立環境研究所地球システム領域提供データ

3-1-3.気象庁による観測結果

岩手県大船渡市綾里における特定物質の大気中濃度の経年変化

気象庁では、1990年から岩手県大船渡市綾里において、CFC等の観測を行っている。綾里 における CFC-11、CFC-12 及び CFC-113 濃度の経年変化を図 2-3-10 に示す。いずれも季節 変化はみられない。CFC-11 濃度は 1993~1994年の約 270pptv をピークとして減少傾向にあ る。CFC-12 濃度は、1993年まで増加し、その後も緩やかに増加していたが、2005年をピー クに減少している。CFC-113 濃度は 2001年頃までにごく緩やかな増加が止まり、その後減少 傾向がみられる。2021年の年平均濃度は CFC-11 が 225pptv、CFC-12 が 500pptv、CFC-113 が 70pptv(いずれの値も速報値)であった。

図 2-3-10 岩手県大船渡市綾里における大気中のクロロフルオロカーボン類濃度の経年変化 綾里における大気中の CFC-11(上)、CFC-12(中)、CFC-113(下)の地上での月平均濃度(測定結果を月平 均したもの)の経年変化を示す。なお、データのない期間は、主に観測機器の更新や較正作業のための欠測で ある。また、観測精度を向上させるため、2003 年 9 月から放射線源を用いた電子捕獲型検出器(ECD)を搭 載したガスクロマトグラフを導入したことにより、観測濃度データのばらつきがそれ以前と比較して少なくな っている。※口絵 IV 参照。口絵では、水色で表している。

(出典) 気象庁提供

(参考) 東アジアにおける CFC-11 の放出量増加とその後の減少

かつて断熱材用の発泡剤として広く使われた CFC-11 は、モントリオール議定書による 生産量の段階的な削減を経て、途上国を含めて 2010 年に全廃された。この国際的な規制 を反映して、それまで増加傾向にあった大気中の CFC-11 濃度は 90 年代半ば頃から減少に 転じ、その後長く減少傾向にあった。しかし、2013 年頃から大気中濃度の減少速度が予想 外の鈍化を示すと共に、南北両半球における濃度差が増加する傾向が観測された。こうし た変化は大気への放出量の増加に起因し、その少なくとも一部は東アジアからの放出によ る可能性が高いことが報告された(WMO/UNEP オゾン層破壊の科学アセスメント:2018) 東アジアでハロカーボンの観測を実施している国立環境研究所の波照間ステーション

(沖縄県波照間島) や AGAGE による韓国の Gosan ステーション(済州島)では、CFC-11 濃度のスパイク的な増加が 2008-2017 年に渡って継続的に捉えられていた。これらの観測 データの解析からは、2014-2017 年における中国東部からの CFC-11 の年間放出量が、2008 -2012 年と比べて 7.0±3.0 キロトン多く、その増加量は全球の放出量増加のかなりの部分 (少なくとも 40~60%)に相当すると推定された。また、放出量の分布の変化から、放出 量の増加は中国北東部に位置する山東省と河北省から主に生じていると考えられた。

(Rigby et al., 2019)_o

こうした全球スケール及び東アジアスケールにおける CFC-11 の放出量増加の報告を受け、モントリオール議定書の枠組みにおいて中国国内の CFC 規制の取り組み状況について議論が行われ、中国政府からは取り締まり強化について報告があった。

実際に、波照間と Gosan では、それまで増加傾向にあった CFC-11 のスパイク的な濃度 増加の強度が 2018 年頃から低下している様子が捉えられている(図 1)。

図1 韓国の Gosan ステーション(済州島)と日本の波照間ステーション(沖縄県・波照間 島)で観測された大気中の CFC-11 濃度の変動。グレーの線は比較のためにプロットされたグ リム岬(オーストラリア・タスマニア島)における CFC-11 濃度の変動。

令和3年度監視結果(特定物質等)

大気輸送モデルを利用した大気観測データ の解析からは、中国東部からの CFC-11 の年 間放出量が 2018 年から減少に転じ、2019 年 の年間放出量が 5.0 ± 1.0 キロトンであるこ とが示されている。これは放出量の高かっ た 2014-2017 年より 10±3 キロトン低く、 予想外の増加が始まる前の放出量とほぼ等 しい。また、2014-2017 年には山東省から河 北省を中心に広がっていた放出量の高い地 域が、2019 年には山東省一帯に縮小し、放 出強度も低下している(図 2)。

また、CFC-11 とほぼ同期した放出量の増 減はCFC-11の製造に関わる物質である四塩 化炭素(原料)とCFC-12(副産物)にも見 られている。これにより、中国東部における 予想外の放出量増加は全廃後にこの地域で CFC-11が製造されたことに起因すると考え られている。この地域におけるCFC-11及び 関連物質の推定製造量(2013-2018年)から は、これによるオゾン層破壊への影響は小 さいと考えられている。(Park et al., 2021)

なお、中国東部における放出量の減少と 同期して、全球の CFC-11 放出量も 2018 年 から 2019 年にかけて減少し、増加前の軌道 に戻りつつあることが報告されている。

(Montzka et al., 2021)

図 2 大気観測から推定された東アジアに おける CFC-11 の放出量分布の推移。(a) 2008-2012 年、(b) 2014-2017 年、(c)2019 年における平均放出量分布。▲と●はそれぞ れ韓国と日本の観測地点の位置を示す。

3-1-4.大学・国際機関による観測結果

東京大学による観測結果

我が国では、環境省が観測を開始する 10 年前の 1979 年から東京大学で、32 年間にわたり 観測が行われており、北海道と南極昭和基地で夏期と冬期に集中して金属製容器に採取したバ ックグラウンド大気試料の精密定量分析データが蓄積されている。同観測は、2011 年 3 月の 東京電力福島第一原子力発電所事故に東京大学が対応するため中断、中止された。

東京大学によって測定された特定物質のうち、CFC-11、CFC-12、CFC-113 及び 1,1,1-トリ クロロエタン(CH₃CCl₃)の、北海道及び南極昭和基地における大気中のバックグラウンド濃 度の経年変化を、図 2-3-11 に、それぞれ実線(N)及び破線(S)で示す。

北半球中緯度の平均的な状況を代表する北海道において、1980年代の年増加率は CFC-11 及び CFC-12 が約4%、CFC-113 が約10%であったが、モントリオール議定書による国際的な CFC の生産・消費の規制開始(1989年7月)に伴って1990年以降これら CFC の大気中濃度 増加は鈍り、さらに先進国における CFC の全廃(1995年末)を反映して、CFC-11は1990年 代に入って、CFC-12は2000年代後半で、非常に僅かずつ減少し始めた。

北半球中緯度(北海道:N)及び南半球(南極昭和基地:S)※口絵 IV 参照。 (出典)東京大学提供データ

南半球を代表する南極昭和基地でも、1980年代には CFC 類の大気中濃度の増加が観測され たが、同じレベルの濃度に達する時期は北海道に比べ、2年程度遅れている。図 2-3-12と口絵 IV で、観測開始から 1990年代前半くらいまでの時期に北半球と南半球の間で CFC 類の濃度 差が生じる理由としては、この時期は CFC 類の放出が盛んに行われた時期にあたること、ま た、CFC 類の主要な放出源が北半球側にあり、北半球側の大気と南半球側の大気が混合するの にある程度の時間を要することが挙げられる。主に北半球側で放出された CFC 類は大気中で

令和3年度監視結果(特定物質等)

数十年~百年以上の寿命をもち、放出後はほとんど化学変化を受けずに高濃度を保ちながら南 半球側へ徐々に広がっていく。南半球側でこの高濃度 CFC 大気の影響が出始めた頃には、北 半球側ではさらなる放出によって濃度がさらに上昇している。したがって、南北半球間で偏在 している放出源からの放出が続いている間は南北半球間である程度の濃度差が生じる。一方、 世界的な放出規制に伴って次第に北半球での濃度増加が鈍化すると、少し遅れて南半球にもそ の影響があらわれ、濃度増加が小さくなる。さらに全廃に伴って南北両半球間における濃度差 がなくなりつつある。

大気中寿命が短い1,1,1・トリクロロエタンについては、先進国が集中する北半球から南半球 に拡散する対流圏内でも分解されることから、南極では、1980年代には北半球より約30%低 い濃度で増加した。両半球の大気中濃度は、短寿命を反映して、国際的な規制が始まった1993 年以降急速に減少し、特に1997年以降、指数関数的に減少している。

これらハロカーボン類の使用量が北半球で圧倒的に多かった 1970 年代から 1990 年代前半 においては、北半球と南半球の大気中濃度には大きな差があったが、その後、その生産と消費 が国際的に規制された結果、南北両半球の大気中濃度に差はなくなり、近年は、日本における 北半球バックグラウンド濃度の測定結果からでもグローバル大気中濃度の動向を知ることが できるようになった。したがって東京大学のこれらの結果と、わが国の他機関による北半球で の近年の観測結果の傾向を合わせれば、30 数年間にわたるこれらのグローバルな大気中濃度 変動を知ることができる。

109

国際ネットワークによる観測結果

「オゾン層破壊の科学アセスメント: 2018」(WMO, 2018)では、世界各地で観測されたオ ゾン層破壊物質の地球規模の濃度がとりまとめられている。以下はその抜粋である。

(a) CFC

地球規模の CFC 濃度の経年変化を図 2-3-12 に示す。

CFC-11、CFC-12、CFC-113の大気中濃度は、それぞれ、1994~1995年、2002~2003年、 1996~1997年ごろに最大となって以降は減少傾向が続いている。この内CFC-11については 2013年頃から濃度の減少に鈍化が認められる(p.106の参考記事を参照のこと)。

図 2-3-12 海外のネットワークで観測された CFC-11、CFC-12 及び CFC-113 の濃度変化 各観測ネットワークによる観測結果。NOAA による観測結果を実線、AGAGE による観測結果を点線で示し ている。

(出典) Scientific Assessment of Ozone Depletion: 2018 (WMO, 2018) より作成

(b) 四塩化炭素及び 1, 1, 1-トリクロロエタン

地球規模の四塩化炭素と1,1,1-トリクロロエタン濃度の経年変化を図 2-3-13 に示す。

四塩化炭素の濃度は 1990 年代初期に最大値となり、その後は着実に減少している。1,1,1-ト リクロロエタンの濃度は、1992 年頃に最大値となった後は着実に減少している。2012 年の大 気中濃度(約 5.4ppt)は最も濃度の高かった 1992 年ごろの濃度(約 130ppt)の 4%程度のレ ベルである。

令和3年度監視結果(特定物質等)

図 2-3-13 海外のネットワークで観測された四塩化炭素及び 1,1,1-トリクロロエタンの濃度変化 各観測ネットワークによる観測結果。NOAA による観測結果を実線、AGAGE による観測結果を点線で示して いる。

(出典) Scientific Assessment of Ozone Depletion:2018 (WMO,2018) より作成

(c) ハロン

地球規模のハロン-1211とハロン-1301の濃度の経年変化を図 2-3-14に示す。

ハロン-1211の大気中濃度は、2005~2008年にかけて初めて減少に転じた。ハロン-1301の 大気中濃度は1990年代前半に比べると増加傾向は鈍ったものの、2010年以降もなお増加傾向 がみられる。

図 2-3-14 海外のネットワークで観測されたハロン-1211 及びハロン-1301 の濃度変化 各観測ネットワークによる観測結果。NOAA による観測結果を実線、AGAGE による観測結果を点線で示して いる。

(出典) Scientific Assessment of Ozone Depletion:2018 (WMO,2018) より作成

(d) HCFC

地球規模の HCFC 濃度の経年変化を図 2-3-15 に示す。

HCFC-22、HCFC-141b、HCFC-142bの大気中濃度はいずれも増加している。この内 HCFC-22 では 2010 年頃から増加傾向がやや鈍ってきている。HCFC-141b では 2010 年以降増加速 度の増大が認められたものの、2013 年頃からは増加傾向に鈍化が認められる。HCFC-142b に ついては、2008 年頃から増加傾向は鈍ってきており、特に 2013 年頃からはわずかな増加に留 まっている。

図 2-3-15 海外のネットワークで観測された HCFC-22、HCFC-141b 及び HCFC-142b の濃度変化 各観測ネットワークによる観測結果。NOAA による観測結果を実線、AGAGE による観測結果を点線で示している。

(出典) Scientific Assessment of Ozone Depletion: 2018 (WMO,2018) より作成

(e) HFC-134a

HFC-134aは CFC-12 の代替として冷媒に用いられ、消費量が増加している。このため、大気中濃度は顕著な増加傾向にあり、近年は毎年約 7~8%ずつ増加している。

図 2-3-16 海外のネットワークで観測された HFC-134a の濃度変化 各観測ネットワークによる観測結果。

(出典) Scientific Assessment of Ozone Depletion: 2018 (WMO,2018)

(f) 臭化メチル

臭化メチルの濃度は、2000年以降、着実に減少しており、2010年以降の濃度(約7ppt)は、 減少傾向が認められる以前(1990年代)の濃度(約9ppt)に比べ、3/4程度まで減少してい る。(図 2-3-17)。

図 2-3-17 海外のネットワークで観測された臭化メチルの濃度変化

各観測ネットワークによる観測結果。NOAA による観測結果を実線、AGAGE による観測結果を点線で示している。

(出典) Scientific Assessment of Ozone Depletion:2018 (WMO,2018) より作成

3-2. 日本の都市域における大気中濃度の状況

特定物質等の大気中濃度の経年変化(川崎市)

環境省では、1988年以降、都市域における特定物質等の排出の状況を把握するため、川崎市 内において特定物質等の大気中濃度の連続測定を実施している。

図 2-3-19 に、1991 年 3 月から 2022 年 2 月までの CFC-11、CFC-12、CFC-113、四塩化炭素及び 1,1,1-トリクロロエタンの測定結果(CFC-113、四塩化炭素及び 1,1,1-トリクロロエタンについては 2006 年 2 月まで)並びに 2006 年 3 月から 2022 年 2 月までの HCFC-22、 HCFC-141b、HCFC-142b、HFC-134a 及び臭化メチルの測定結果を示す。

これらの図は、月間の測定データの集計結果の経時変化を示しており、変動幅の大きさを示 すため、中央値に加え 80%値と 20%値についても記載してある。また、2018 年にオゾン層保 護法が改正され、「特定物質代替物質」として HFCs が新たに規制されることとなったことを 受けて、バックグラウンド地域試料と同様に、2019 年度から HFCs17 物質(HFC-134、HFC-143、HFC-245fa、HFC-365mfc、HFC-227ea、HFC-236cb、HFC-236ea、HFC-236fa、HFC-245ca、HFC-43-10mee、HFC-32、HFC-125、HFC-143a、HFC-41、HFC-152、HFC-152a、 HFC-23)を測定対象物質としている(測定結果は「参考資料 3」p.135~に記載)。

CFC-11、CFC-12、CFC-113、四塩化炭素及び1,1,1-トリクロロエタンの大気中濃度は、1990 年代には頻繁に高濃度が観測され、変動幅は大きく、大気中濃度の中央値も北海道よりは高か ったが、いずれも次第に減少し、2000年代以降、図2-3-1に示す北海道における大気中濃度と ほとんど変わらなくなってきている。この近年の変動幅の減少は、川崎周辺におけるこれら物 質の放出が著しく減少していることを示しており、日本における生産量等の削減及び排出抑制 等の結果と考えられる。

一方、HCFC-22、HCFC-141b 及び HCFC-142b は、測定を開始した 2006 年以降 2010 年 前後までは頻繁に高濃度が検出されてきたが、最近では、その頻度も強度も低下しており、都 市域における放出量の減少を示しているものの、大気中濃度の中央値は北海道より依然として 高い。これらの物質は冷媒や発泡剤の代替フロン類として多く使用され、機器装置類の中にも 大量に存在しており、都市域におけるそれらからの放出を反映していると考えられる。なお、 北海道において観測されるこれら物質のバックグラウンド濃度の増加は、川崎等の都市部にお ける濃度変動に比較して数十分の一の変化である。したがって、バックグラウンド濃度の変化 を、高濃度の都市部における測定で検出することはできない。一方、グローバルな放出量の変 化は、北海道におけるバックグラウンド濃度の変化として、変動幅も小さく、かつゆっくり現 れるが、主要な発生源のある都市域における濃度変動には、日本における放出量の変化が、速 やかに、かつ顕著に現れる(大気中寿命に関係なく、例えば放出量が減少すれば、都市域での 大気中濃度は、変動幅が大きく減少し、平均濃度は次第にバックグラウンド濃度に近づいて行 く)。

HFC-134a においては、HCFC と同様に 2010 年頃まで検出されていた高濃度イベントも最 近ではその頻度・強度は低下している。一方で、2011 年頃から大気中濃度の中央値及び 20% 値に明瞭な増加傾向が認められる。この増加傾向は北海道におけるバックグランド濃度の増加 に対応するものである。なお、大気中濃度の中央値は北海道におけるバックグランド濃度に比

114

べて依然として高い。

天然にも発生源のある臭化メチルでは、その濃度の値も変動も北海道に比較してそれほど大 きくはなく、都市部での放出は限定的と考えられる。

なお、「フロン等オゾン層影響微量ガス等監視調査」について、2015 年度の調査から測定装 置等を変更した(3-1-1節(p.96~)を参照)。測定されたフロン等オゾン層影響微量ガスの濃 度は、100ppt 程度の低濃度の標準ガスを利用して定量を行った。都市地域での測定では、比較 的高頻度(1日に1回)に標準ガス測定を行っており、その過程で、臭化メチルの標準ガス濃 度が短期間で大きく減少することが判明した。そこで濃度保証がなされ、ガス容器内での濃度 減少も無視し得る濃度(1ppm)の標準ガスを用いて100ppt標準ガス容器中の臭化メチル濃度 の減少率を算出した。この減少率を用いて都市地域試料中の臭化メチルの測定値について補正 を行った。

図 2-3-18 川崎市における特定物質等の月別濃度(中央値)の経年変化

 ※2006年3月からGC/MSを中心に構成した新装置による測定を開始した。
 ※2015年10月から新規システム導入に伴いGC/MSの条件を変更した。
 ※80%値と20%値は変動幅の大きさを示す。
 (出典)環境省 平成17年度フロン等オゾン層影響微量ガス監視調査 及び令和3年度フロン等オゾン層影響微量ガス等監視調査

※80%値と20%値は変動幅の大きさを示す。

(出典) 環境省 平成 17 年度フロン等オゾン層影響微量ガス監視調査 及び令和3年度フロン等オゾン層影響微量ガス等監視調査

図 2-3-18 川崎市における特定物質等の月別濃度(中央値)の経年変化(続き) ※2015 年 10 月から新規システム導入に伴い GC/MS の条件を変更した。 ※80%値と 20%値は変動幅の大きさを示す。 (出典)環境省 平成 17 年度フロン等オゾン層影響微量ガス監視調査 及び令和 3 年度フロン等オゾン層影響微量ガス等監視調査

図 2-3-18 川崎市における特定物質等の月別濃度(中央値)の経年変化(続き) ※2015 年 10 月から新規システム導入に伴い GC/MS の条件を変更した。 ※80%値と 20%値は変動幅の大きさを示す。 (出典)環境省 平成 17 年度フロン等オゾン層影響微量ガス監視調査 及び令和 3 年度フロン等オゾン層影響微量ガス等監視調査

(出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

図 2-3-18 川崎市における特定物質等の月別濃度(中央値)の経年変化(続き) (出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

(出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

図 2-3-18 川崎市における特定物質等の月別濃度(中央値)の経年変化(続き) (出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

4. 特定物質の大気中濃度の将来予測

オゾン層破壊物質の大気中濃度の将来予測については、「オゾン層破壊の科学アセスメント: 2014 及び 2018」(WMO,2014 及び 2018)に詳しく述べられている。

図 2-4-1 の左上の図は、オゾン層破壊の潜在的脅威を示す等価実効成層圏塩素量(EESC) (詳細は第1部3-1(b)(p.19)脚注を参照)の経年変化を示す。等価実効成層圏塩素量は、 1990年まで急速に増加してきたが、モントリオール議定書の規制によって1990年代以降減少 に転じた。等価実効成層圏塩素量の減少傾向は、21世紀を通じて継続すると考えられるが、 1980年レベルにまで回復するには2060年代までかかると考えられる。

CFCの将来予測

CFC の生産と消費は既に、先進国では 1995 年末までに、途上国では 2009 年末までに全廃 されたが、CFC は大気中寿命が非常に長く、また冷凍・空調機器や断熱材にも多く使用され大 気中にゆっくりと放出されるので、今後、CFC の大気中濃度は極めてゆるやかに減少していく と予測されている。

HCFC の将来予測

モントリオール議定書では、生産・消費の規制スケジュールに従って削減が進められている ものの、当面の間 HCFC は使用されるため、HCFC-22、HCFC-141b、HCFC-142b の大気中 濃度は、引き続き増加すると考えられる。HCFC は、対流圏内で分解が進むので大気中寿命が CFC より短く、CFC に比べるとオゾン層に対する影響(オゾン層破壊係数)は小さい(詳細 は表 2-1-1 (p.93) を参照)。

2007 年 9 月のモントリオール議定書第 19 回締約国会議において、先進国での HCFC の生産は 2019 年末までに、途上国においても 2029 年末までに原則全廃することで前倒しされた。 したがって、HCFC の大気中濃度は引き続き増加するが、今後 10~20 年でピークに達し、その後減少すると予測されている。

1,1,1-トリクロロエタンの将来予測

1,1,1・トリクロロエタンは大気寿命が5年と他の多くのオゾン層破壊物質に比べて短いこと もあり、オゾン層破壊物質のうちこれまでの削減効果が大気中濃度の著しい減少として最も明 瞭に表れている。先進国では1996年に生産と消費が中止され、途上国でも2014年末までに 全廃された。途上国での規制が達成でき次第、大気中から完全に除去されると見込まれている。

ハロン類の将来予測

ハロン類は、先進国では1994年に、途上国では2009年末までに全廃となっているものの、 消火機器中の多量のハロンがゆっくりと大気中に放出されるため、引き続き増加すると考えら れる。ハロンは大気中寿命も長いため、大気中濃度は今後も高水準が続くと考えられる。

塩化メチルと臭化メチルの将来予測

塩化メチルと臭化メチルは、その多くが自然起源であるという点で、他のオゾン層破壊物質 とは異なっている。

モントリオール議定書の規制対象となっていない塩化メチルの大気中の平均濃度は、自然発 生源に変化がなければ、今世紀を通して変化なく推移すると考えられる。

臭化メチルは、モントリオール議定書の規制対象となっており、近年、大気中の濃度は減少 しており、今後さらに規制により減少すると自然発生量に近づくが、その値は定かではない。

参考資料

参考資料 1. 特定物質の特徴と用途

CFC & HCFC

(参考) フロンとは

フロンとは、炭素、フッ素、塩素及び水素からなる化合物である。フロンという総称は日本のみで使われ、CFC(クロロフルオロカーボン)とHCFC(ハイドロクロロフルオロカーボン)がある。また、これらの代替物質として、オゾン層を破壊しないものの温室効果の高いHFC(ハイドロフルオロカーボン)があり、特定製品に係るフロン類の回収及び破壊の実施の確保等に関する法律(フロン回収・破壊法)では、CFC、HCFC、HFCをあわせてフロン類と定義している。

フロンの特徴は、圧力を加えたり減らすことによって、常温で容易に気体から液体、液体か ら気体に変化する点である。フロンは 1930 年に米国で電気冷蔵庫の冷媒として開発された。 当時冷媒として使われていたアンモニアやクロロメタン(塩化メチル)などは可燃性や腐食性 などがあり、毒性も強かったため、フロンはそれに代わる物質として普及した。

また、比較的毒性が低いこと、不燃性であること、熱に対しても化学的にも安定で分解しに くいことなどの性質から、エアコン等の冷媒、電子部品等の洗浄剤、建築用や冷凍冷蔵機器の 断熱材に使用される硬質ウレタンフォームなどの発泡剤、スプレーの噴射剤など、日常生活の 中で広く使用されてきた。

日本では、オゾン層保護法によって CFC は 1995 年末までに生産が禁止され、HCFC は生産が段階的に削減されている。ただし、それ以前に製造され、製品中に残留して現在も使用されているものも多い。

	主な用途
CFC-11	ビルの空調機等の冷媒、断熱材の発泡剤、ぜん息治療薬用噴霧吸入器の噴射剤
CEC 19	断熱材の発泡剤、業務用冷凍空調機器の冷媒、家庭用冷蔵庫の冷媒、飲料用自
010 12	動販売機の冷媒、カーエアコンの冷媒、ぜん息治療薬用噴霧吸入器の噴射剤
CFC-13	冷媒、工業原料
CFC-112	電子機器や精密機器の洗浄剤
CFC-113	電子機器や精密機器の洗浄剤、工業原料
CFC-114	ぜん息治療薬用噴霧吸入器の噴射剤、スプレー噴射剤、工業原料
CFC-115	業務用冷凍空調機器の冷媒
HCFC-21	工業原料
HCFC-99	断熱材の発泡剤、業務用冷凍空調機器の冷媒、飲料用自動販売機の冷媒、家庭
	用ルームエアコンの冷媒、スプレー噴射剤、フッ素樹脂の製造用原料
HCFC-123	大型冷凍機用の冷媒、工業原料
HCFC-124	冷媒
HCFC-133	工業原料
HCFC-141b	断熱材の発泡剤、電子機器や精密機器の洗浄剤
HCFC-142b	断熱材の発泡剤、工業原料
HCFC-225	ドライクリーニング溶剤、電子部品などの精密部品の洗浄剤

表 2-資-1 フロンの主な用途

(出典)環境省 化学物質ファクトシート 2012 年度版

ハロン

炭素、フッ素、塩素及び水素の化合物であるフルオロカーボンのうち、塩素の一部が臭素に 置き換わったものがハロン類である。ハロン類は、1960年代後半からアメリカにおいて研究 開発が進められ、1970年にはガス系消火剤として実用化された。我が国では1971年に消防法 に基づく特例措置としてハロン類の使用が認められ、ハロン類の使用が急速に増えた。ハロン 1301、ハロン 1211はともに常温で気体であり、ハロン 2402は常温で液体である。いずれも 消火剤として用いられるが、ハロン 1301が最も多く使用されている。

ハロン類が急速に普及した主な理由は、消火後に物が汚れたり傷ついたりすることがなく、 電気絶縁性が問題となる施設でも使用できる長所があることや、消火能力にすぐれ、二酸化炭 素に比べて少量で消火できるため、ハロン類の貯蔵設備や容器を小型にできることである。ま た、ハロン類は人体に影響を及ぼす濃度よりも低濃度で消火するため安全性が高い点も普及し た理由である。

このため、ハロン類を用いた消火設備は、地下駐車場、航空機や船舶、ライフライン等の維 持管理に必要なコンピュータ室や通信機器室、美術品展示室などの施設に広く採用されてきた。

日本では、オゾン層保護法によって、ハロン類の製造は原則として禁止されているが、それ 以前に製造されたものは現在でも使用されている。

代替物質の開発が進められているが、ハロン類に完全に代わる消火剤は現在も開発されてい ないため、ハロンバンク推進協議会(現「消防環境ネットワーク」)が1993年に設立され、ハ ロン類の適正な管理と回収、リサイクルハロンの活用によって必要量の供給が行われている。

四塩化炭素

四塩化炭素は、炭素と塩素からなる有機化合物で、水に溶けにくく、常温では揮発性が高い 無色透明の液体である。不燃性であり、消火効果が高い薬剤として古くから知られ、19世紀後 半には割れやすいガラス容器に四塩化炭素を入れて火災に投げ込む方法で消火に利用された り、20世紀前半にはポンプ式消火器の消火剤にも使われていた。20世紀後半に入ってからは、 主にフロン類の製造原料として使われたり、溶剤、機械洗浄剤、殺虫剤の原料などとして利用 されてきた。

日本では、オゾン層保護法によって、原則として製造が禁止されている。ただし、試験研究 や分析用などの特別な用途、又は他の化学物質の原料として使用するための四塩化炭素の製造 は認められている。また、製造が禁止される以前に製造されたものは、現在でも使用されてい る。現在は、四塩化炭素のほとんどは、他のクロロカーボン、農薬、フッ素系ガスなどの原料 として使われている他、試薬としてもわずかだが使われている。

1,1,1-トリクロロエタン

1,1,1・トリクロロエタン (別名メチルクロロホルム) は、塩素を含む有機化合物で、水に溶け にくく、また常温では揮発性が高い無色透明の液体である。かつては電気・電子、輸送機器、 精密機器等、幅広い工業分野で金属洗浄用に使われていた。これは、金属洗浄用に多用されて いたトリクロロエチレンやテトラクロロエチレンの有害性が問題となったことから、それらの 代替品としての需要が増えたことによる。この他、ドライクリーニング用溶剤、繊維のシミ抜 き剤、また印刷工程で印刷製版を仕上げる際などにも使われていた。

日本では、オゾン層保護法で製造が禁止されている。ただし、試験研究や分析用などの特別 な用途、あるいは代替フロン(HCFC141bや HCFC142b など)など、他の化学物質の原料と して使用するための 1,1,1-トリクロロエタンの製造は認められている。また、それ以前に製造 されたものは、現在でも使用されている。

HBFC

我が国での使用実態はない。

ブロモクロロメタン

我が国での使用実態はない。

臭化メチル

臭化メチルは、常温で無色透明の気体で、畑やハウス栽培などで主に土壌用の殺虫剤として 利用される農薬の有効成分(原体)である。通常は加圧されて液化ガスとして貯蔵、輸送され る。液化臭化メチルは、加圧が解かれると速やかに揮発するが、空気より重いため、拡散した り希釈されにくい。缶入りの液体臭化メチルは、畑地の農業用シートなどの下で缶を開けて揮 発させ、そのガスを土壌中に広がらせる。

対象となる作物は幅広く、スイカ、メロン、キュウリ、イチゴ、トマト、ピーマン、ショウ ガや花き類などがあげられる。また、つる割病、立枯病、根腐病、青枯病、カビ、ウイルスや センチュウなど、広範囲の病害虫に対して殺虫・殺菌効果があるため、多用されてきた。日本 では、オゾン層保護法によって原則として 2005 年には臭化メチルの製造が禁止されている。 ただし、一部の農作物については技術的、経済的に代替が困難で、臭化メチルの使用が不可欠 であることから、2006 年以降も例外的に製造を認められてきたものの、2013 年にはこれらの 製造についても全廃している。

また、臭化メチルは、検疫用にも使われている。農作物の輸出入の際に病害虫が侵入したり 広まったりしないように、倉庫などに農作物を入れて消毒する。検疫と出荷前処理に用いるた めの製造については規制の対象外となっている。

臭化メチルは自然発生源をもつ物質である。以前の研究では自然発生源は熱帯域に集中しているとされていたが(WMO, 2011)、最近の研究では、熱帯植物が臭化メチルを放出するのと同じ程度吸収しており、熱帯域における臭化メチルの発生量を定量化するのは困難であることが示されている(WMO, 2015)。なお、残りが人為起源の臭化メチルだが、これには例外的な使用分や検疫と出荷前処理に用いるための使用分が含まれている。人為起源の臭化メチルの総量は、全臭化メチルの20%程度を占める(WMO, 2015)。

127

参考資料 2. 北海道における特定物質等の平均濃度の経年変化

環境省調査により北海道(非汚染地域)で観測された特定物質等の平均濃度の経年変化は表 2-資-2のとおりであった。

結果は各月の測定結果の平均値(平均値は原則として6試料の測定結果から求めた)である。 一部の物質について濃度を3桁まで表示したが、必ずしも有効数字を意味するものではない。

なお、それぞれの物質ごとの変化は本文中の図 2-3-1~図 2-3-8 (p.98~103) にてグラフ化 されている。

表 2-資-2(1) 北海道における特定物質等の大気中のバックグラウンド濃度の経年変化

						(単位	: pptv)			
き 本本 [CFC-11		CFC	2-12	CFC-113		CFC-114		CFC-115	
採取時期	濃度	標準 偏差	濃度	標準 偏差	濃度	標準 偏差	濃度	標準 偏差	濃度	標準 偏差
1989年1月	258	4	486	3	69.8	2.2	15.2	0.42	5.32	0.07
3 月	259	2	487	4	69.6	2.4	15.2	0.29	5.81	0.13
11 月	267	6	499	9	73.1	2.3	15.6	0.27	5.67	0.34
1990年1月	268	3	504	4	75.3	2.1	15.7	0.28	5.98	0.31
3 月	265	3	503	3	75.4	1.4	15.7	0.15	5.93	0.12
10 月	277	6	509	2	79.0	0.7	15.7	0.11	6.17	0.28
1991年1月	277	4	510	2	78.6	1.1	15.8	0.12	6.23	0.49
3 月	277	3	511	4	80.8	1.3	15.8	0.39	6.26	0.33
8 月	275	2	516	5	80.0	1.0	15.7	0.13	6.40	0.04
1992年1月	279	5	520	3	83.8	1.2	15.9	0.31	6.59	0.24
3 月	280	2	519	5	84.7	1.7	16.1	0.15	6.53	0.11
8月	283	4	525	2	87.0	-	16.0	0.11	7.14	0.37
1993年1月	284	6	530	3	84.6	0.8	15.9	0.18	7.02	0.20
3 月	277	2	526	6	85.5	1.2	16.0	0.31	7.13	0.14
8月	277	2	529	3	84.8	0.8	16.0	0.12	7.17	0.30
1994年1月	282	3	537	5	86.1	-	16.1	0.26	7.58	0.37
3 月	279	6	534	3	86.3	0.9	16.2	0.37	7.51	0.40
7 月	279	7	539	4	85.5	1.7	16.1	0.28	7.57	0.24
1995年1月	279	2	541	5	86.2	1.5	16.0	0.21	7.61	0.23
3 月	278	3	543	4	86.0	2.0	16.2	0.39	7.67	0.19
8月	275	4	543	5	86.2	1.4	16.0	0.24	7.76	0.11
1996年1月	275	1	541	4	84.5	1.2	16.2	0.19	7.89	0.09
3 月	275	2	541	4	85.4	1.1	16.2	0.19	8.04	0.29
8月	278	3	542	4	84.4	2.1	16.1	0.23	8.04	0.18
1997年1月	274	1	549	3	84.9	1.6	16.3	0.13	8.38	0.08
3 月	274	2	548	3	84.1	0.6	16.2	0.24	8.32	0.07
8月	276	3	552	6	84.5	1.2	16.1	0.36	8.33	0.03
1998年1月	270	3	548	4	84.6	0.7	16.2	0.12	8.27	0.39
3 月	269	1	547	4	84.6	0.4	16.3	0.25	8.56	0.12
8月	273	4	552	2	83.6	1.1	16.3	0.21	8.64	0.19
1999年2月	269	3	546	1	82.6	0.9	16.1	0.17	8.36	0.29
3月	269	3	548	4	83.4	2.1	16.1	0.26	8.56	0.48
8月	271	4	547	3	83.3	0.7	16.2	0.26	8.55	0.13
2000年1月	263	2	551 550	4	82.7	1.4	16.2	0.10	8.48	0.13
う月	266	ර බ	000 551	2	82.9 81.9	1.3	16.Z	0.15	8.98 8.14	0.25
0月	208	2	551	<u>Z</u>	01.3	0.6	10.1	0.10	0.44	0.10
2001年1月	268	2	540	4	82.4 82 E	0.7	16.2	0.15	8.96	0.22
3月 8日	200	1	549 549	0 9	81 /	0.7	16.2	0.10	0.40 8.65	0.10
0万	401	1	040		01.4	0.1	10.1	0.41	0.00	0.17

128

⇒ bulat	CF	C-11	CFC	2-12	CFC	-113	CFC	-114	CFO	C-115
試料	5.0 × 1 ×	標進	S.R 1 .	標進	N.B I.	標進	S.B 1 .	標進	N.H 1 .	標進
採取時期	濃度	偏差	濃度	偏差	濃度	偏差	濃度	偏差	濃度	偏差
2002年1月	265	1	550	2	80.5	0.5	16.2	0.25	8 72	0.16
3月	264	1	550	2	80.8	0.2	16.0	0.17	8 70	0.12
8月	264	1	551	1	80.8	1.1	16.1	0.19	8.79	0.22
2003年1月	262	1	551	4	79.6	0.7	16.2	0.19	8.83	0.23
3月	261	2	549	2	80.6	0.5	16.2	0.14	8.79	0.25
8月	259	1	554	2	79.7	0.2	16.1	0.15	8.90	0.20
2004年1月	259	2	550	2	79.3	0.4	16.0	0.08	8.82	0.23
3月	259	1	550	3	79.7	0.4	16.1	0.06	8.87	0.19
8月	258	1	548	4	79.4	0.4	15.9	0.18	8.85	0.24
2005年1月	258	1	549	1	78.8	0.5	15.9	0.23	8.86	0.16
3月	259	1	549	1	79.0	0.4	16.1	0.08	8.87	0.23
8月	256	1	549	2	78.9	0.3	16.1	0.10	8.89	0.13
2006年1月	256	1	548	2	78.3	0.3	16.1	0.10	8.93	0.11
3 月	256	1	549	1	78.7	0.6	16.0	0.04	8.92	0.08
8月	254	1	549	3	78.1	0.5	16.0	0.20	8.92	0.13
2007年1月	256	2	549	4	76.4	0.4	16.2	0.12	8.91	0.08
8月	256	2	545	2	76.1	0.6	15.8	0.25	9.02	0.11
2008年1月	253	1	544	2	77.1	0.5	15.9	0.31	9.09	0.16
8月	250	2	544	3	76.4	0.2	16.0	0.10	8.96	0.08
2009年1月	249	1	543	2	77.2	0.2	16.1	0.10	8.90	0.07
8月	247	1	539	1	76.3	0.3	16.0	0.12	8.96	0.17
2010年1月	248	1	539	1	76.3	0.5	16.0	0.04	8.96	0.10
8月	246	1	537	1	75.4	0.3	16.0	0.19	8.96	0.09
12 月	246	1	536	1	75.6	0.3	15.9	0.08	8.95	0.10
2011年8月	245	2	534	1	75.0	0.3	15.9	0.09	8.97	0.16
12 月	244	2	535	2	74.9	0.2	15.9	0.08	8.90	0.08
2012年8月	242	1	531	1	74.3	0.4	15.9	0.04	8.95	0.14
12月	241	1	532	2	74.5	0.2	15.9	0.05	8.95	0.13
2013年8月	240	1	529	1	74.2	0.4	15.8	0.01	8.84	0.04
12月	239	1	528	3	73.8	0.4	15.8	0.06	8.86	0.13
2014年8月	238	2	526	2	73.8	0.2	15.8	0.06	8.91	0.14
12月	238	1	526	2	73.6	0.2	15.8	0.12	8.88	0.15
2015年8月	-	-	-	-	-	-	-	-	-	-
12月	233	1	517	2	72.8	0.5	16.0	0.11	8.66	0.05
2016年8月	232	1	515 F14	2 1	72.0	0.6	15.9	0.16	8.75	0.07
12月	232	1	514	1	70.8	0.5	15.9	0.23	8.70	0.10
2017年8月	233	1	517 516	2 1	72.0	0.4	15.8	0.10	8.74 8.70	0.07
14月	202	1	516 E14	1	72.0	0.5	10.9	0.07	0.10	0.12
2010年0月	200 220	1	514 515	4 9	71.9	0.5	10.3	0.07	0.00 8 00	0.00
2019年8日	202	1	519	<u>4</u>	71.0	0.0	15.0	0.00	8.00	0.13
2013年0月 19日	228	1 1	513	2 1	71.0	0.4	16.0	0.10	8.90	0.10
2020年8月	220	1	519	9	71.4	0.4	16.0	0.10	8.97	0.10
2020年8月	223	1 9	513	2	71.0	0.5	16.0	0.10	9.03	0.13
2021年8日	223	0.2	507	2	71.4	0.5	16.0	0.13	9.05	0.12
12月	224	0.2	503	2	70.9	0.1	16.0	0.11	9.03	0.13

表 2-資-2(1) 北海道における特定物質等の大気中のバックグラウンド濃度の経年変化(続き) (単位:pptv)

※2015年8月のデータは分析時の測定装置配管からのコンタミネーションが考えられ、欠測扱いとした。 ※2015年度の調査から測定装置、試料採取方法等を変更した。

※CFC-114 は異性体(CFC-114a)を含む濃度であり、1989~2014 年は、CFC-114 と CFC-114a(異性体)を 分離して測定した濃度の合計値である。測定方法が変更となった後の 2015 年は CFC-114 と CFC-114a が分 離されずに測定した濃度である。1989~2014 年の偏差は CFC-114 と CFC-114a それぞれの想定の標準偏差 を基に計算された値である。

(出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

表 2-資-2(2) 北海道における特定物質等の大気中のバックグラウンド濃度の経年変化

(単位:pptv)

取除 確定 確 確	試料	ハロン-	1211	ハロン・	ハロン-1301		ハロン-2402		四塩化炭素		クロロエタン
1989年1月 2.45 0.00 1.89 0.03 0.45 0.02 108 3 165 2 11 4 2.51 0.014 1.91 0.05 0.47 0.00 104 14 44 178 13 1906年1月 2.73 0.04 2.06 0.06 0.47 0.03 112 5 176 6 3.4 2.93 0.04 2.21 0.04 0.02 111 4 179 12 1991年1月 2.93 0.05 2.25 0.02 0.48 0.02 1111 4 172 2 3.4 2.94 0.05 2.25 0.02 0.48 0.02 1113 1 177 1 1992年1月 3.14 0.08 2.42 0.02 0.01 110 2 1177 1 3.4 0.03 2.55 0.06 0.01 110 2 147 16 3.43 0.03	採取時期	濃度	標進	濃度	標進 偏差	濃度	標進 偏差	濃度	標進	濃度	標進 偏差
3 月 2.51 0.04 1.91 0.05 0.47 0.01 1.14 4 1.78 1.33 1990 #1 J 2.72 0.07 2.04 0.06 0.47 0.03 1.12 5 1.76 6 3 月 2.76 0.01 2.14 0.02 0.48 0.02 1.11 4 1.79 1.2 191 #1 A 2.81 0.05 2.25 0.03 0.49 0.02 1.11 1 1.76 1.2 1991 #1 J 3.14 0.05 2.25 0.02 0.48 0.01 1.16 4 1.77 1.3 1992 #1 J 3.15 0.03 2.41 0.07 0.52 0.02 1.11 1 1.6 4 1.77 1.1 3 J 3.38 0.08 2.55 0.02 0.02 1.16 1.4 1.74 1.9 3 J 3.38 0.08 2.72 0.05 0.01 1.10 2 1.17	1989年1月	2.45	0.09	1.89	0.03	0.45	0.02	108	3	165	2
11月 2.72 0.07 2.04 0.00 0.46 0.00 114 4 178 13 1990年1月 2.73 0.04 2.06 0.02 0.48 0.02 1106 11 175 22 10月 2.88 0.04 2.21 0.04 0.02 1111 14 177 12 1991年1月 2.93 0.05 2.23 0.05 0.48 0.02 1111 1 177 2 8月 2.91 0.05 2.25 0.02 0.48 0.02 1111 1 177 1 18 3.14 0.08 2.42 0.02 0.02 1161 2 177 1 193 3.15 0.03 2.41 0.06 0.51 0.01 110 2 177 10 3.8 3.39 0.08 2.55 0.06 0.51 0.01 110 5 116 2 147 16	3月	2.51	0.14	1.91	0.05	0.47	0.01	104	1	166	4
1900 #1 H 2.73 0.04 2.06 0.07 0.03 112 5 176 6 0 B 2.81 0.04 2.21 0.04 0.02 0.06 1 175 2 1901 #1 B 2.93 0.05 2.33 0.49 0.02 1111 1 176 2 3 B 2.94 0.05 2.35 0.02 0.04 0.02 1111 1 176 2 3 B 2.91 0.05 2.25 0.02 0.02 113 3 177 3 3 B 3.20 0.01 2.42 0.02 0.02 113 3 177 4 1993 #1 A 3.38 0.03 2.55 0.06 0.54 - 113 4 174 9 8 A 3.34 0.03 2.58 0.02 0.02 105 2 144 11 1994 #1 A 3.58 0.04 2.64 0.06 0.54	11 月	2.72	0.07	2.04	0.10	0.46	0.01	114	4	178	13
3月 2.76 0.01 2.14 0.02 0.48 0.02 111 14 175 12 1991年1月 2.83 0.04 0.22 0.03 0.49 0.02 111 1 176 12 3月 2.94 0.05 2.33 0.05 0.48 0.01 116 4 172 8 1992年1月 3.14 0.08 2.42 0.02 0.51 0.02 113 3 177 7 3月 3.30 0.01 2.44 0.06 0.52 0.02 111 1 177 1 193 1.33 0.03 2.55 0.06 0.54 113 4 146 4 1994 1.7 3.58 0.07 2.56 0.05 0.01 110 12 147 6 1994 3.75 0.02 2.05 0.04 0.05 0.02 1108 2 144 111	1990年1月	2.73	0.04	2.06	0.06	0.47	0.03	112	5	176	6
10月 2.81 0.04 2.21 0.04 0.50 0.02 111 14 179 112 1991年1月 2.93 0.05 2.35 0.02 0.48 0.02 111 1 177 12 8月 2.91 0.05 2.25 0.02 0.48 0.01 116 4 172 8 1992年1月 3.14 0.03 2.41 0.07 0.52 0.02 111 1 177 1 8月 3.15 0.03 2.41 0.07 0.50 0.01 110 2 177 10 3月 3.39 0.08 2.55 0.06 0.51 0.01 110 2 147 16 3月 3.54 0.04 2.58 0.05 0.51 0.01 105 2 144 11 1995年1月 3.68 0.04 2.72 0.04 0.53 0.01 104 3 120 22	3月	2.76	0.01	2.14	0.02	0.48	0.02	106	1	175	2
191 第1 月 2.34 0.08 2.25 0.03 0.49 0.02 111 11 176 12 8月 2.91 0.05 2.33 0.05 0.48 0.02 108 111 14 177 12 1992 #1 月 3.14 0.08 2.42 0.02 0.51 0.02 111 1 177 13 3.31 3.00 0.01 2.44 0.06 0.52 0.02 1111 4 174 13 193 #1 月 3.38 0.07 2.56 0.06 0.51 0.01 110 2 114 1 193 #1 3.34 0.03 2.58 0.02 0.05 0.01 110 5 146 4 1994 #1 月 3.52 0.01 2.70 0.05 0.01 1010 2.8 143 129 3.71 0.87 0.03 2.74 0.05 0.05 0.01 104 1 102 17 <td>10 月</td> <td>2.81</td> <td>0.04</td> <td>2.21</td> <td>0.04</td> <td>0.50</td> <td>0.02</td> <td>111</td> <td>4</td> <td>179</td> <td>12</td>	10 月	2.81	0.04	2.21	0.04	0.50	0.02	111	4	179	12
3月 2.94 0.05 2.23 0.06 0.48 0.01 116 4 172 8 1992年1月 3.14 0.08 2.42 0.02 0.51 0.02 113 3 177 3 3月 3.20 0.10 2.44 0.06 0.52 0.02 111 1 1177 1 3月 3.39 0.33 2.55 0.06 0.54 - 113 4 1174 19 3月 3.39 0.08 2.55 0.06 0.54 - 113 4 114 19 3月 3.54 0.04 2.56 0.02 0.03 109 2 144 11 1995年1月 3.58 0.07 2.54 0.05 5.53 0.01 104 3 129 2 1995年1月 3.88 0.04 2.82 0.05 0.54 0.01 - - 112 112 11 12	1991年1月	2.93	0.08	2.25	0.03	0.49	0.02	111	1	176	2
8月 2.91 0.05 2.25 0.02 0.48 0.01 116 4 172 8 1992 年 1 月 3.14 0.08 2.42 0.02 0.51 0.02 111 1 177 1 8月 3.15 0.03 2.44 0.06 0.52 0.02 1116 2 177 4 1993 年 1 月 3.38 0.07 2.56 0.03 0.01 110 5 117 4 1994 年 1 月 3.52 0.01 2.70 0.01 0.52 0.02 105 2 144 16 1994 年 1 月 3.52 0.06 0.54 0.01 104 3 129 2 3.78 0.05 2.74 0.05 0.53 0.01 104 3 129 2 1995 年 1 月 3.88 0.04 2.80 0.05 0.54 0.01 104 3 120 22 1995 年 1 月 3.82 0.06 <td>3 月</td> <td>2.94</td> <td>0.05</td> <td>2.33</td> <td>0.05</td> <td>0.48</td> <td>0.02</td> <td>108</td> <td>1</td> <td>177</td> <td>2</td>	3 月	2.94	0.05	2.33	0.05	0.48	0.02	108	1	177	2
1992 # 1 月 3.14 0.08 2.42 0.02 0.51 0.02 1113 3 177 3 3 月 3.20 0.10 2.44 0.06 0.52 0.02 1116 1	8月	2.91	0.05	2.25	0.02	0.48	0.01	116	4	172	8
3月 3.20 0.10 2.44 0.06 0.52 0.02 111 1 177 4 1993 年 1月 3.38 0.07 2.56 0.03 0.51 0.01 110 2 177 4 1993 年 1月 3.38 0.08 2.55 0.06 0.51 0.01 110 5 146 4 1994 年 1月 3.52 0.010 2.70 0.01 0.52 0.02 105 2 143 4 1994 年 1月 3.52 0.004 2.58 0.05 0.03 100 2 143 4 1995 年 1月 3.67 0.08 2.72 0.05 0.53 0.01 104 3 120 12 1995 年 1月 3.88 0.04 2.80 0.07 0.54 - - 111 12 11 1995 年 1月 3.80 0.42 2.70 0.05 2.64 0.01 - - 111 12 11	1992年1月	3.14	0.08	2.42	0.02	0.51	0.02	113	3	177	3
8月 3.15 0.03 2.41 0.07 0.52 0.02 116 2 177 4 1993年1月 3.38 0.07 2.56 0.06 0.51 0.01 110 2 1177 10 3月 3.34 0.03 2.58 0.02 0.50 0.01 110 5 146 4 1994年1月 3.54 0.04 2.64 0.06 0.51 0.03 100 2 143 2 7月 3.58 0.07 2.68 0.05 0.53 0.01 104 3 129 2 3.4 3.75 0.05 2.72 0.05 0.54 0.01 1.04 3 130 2 3.4 3.75 0.01 2.74 0.04 0.53 0.01 1.04 3 130 2 111 2 1996 1.1 3.87 0.00 2.82 0.06 0.54 0.01 1.01 10	3 月	3.20	0.10	2.44	0.06	0.52	0.02	111	1	177	1
1993 年 1 月 3.38 0.07 2.56 0.03 0.51 0.01 110 2 177 10 3 月 3.39 0.08 2.55 0.06 0.54 113 4 174 19 8 月 3.34 0.03 2.58 0.02 0.05 0.01 105 2 147 6 3 月 3.54 0.04 2.68 0.05 0.01 106 2 144 11 1995 年 1 月 3.67 0.08 2.72 0.05 0.54 0.01 104 3 129 2 3 月 3.75 0.05 2.74 0.09 0.54 - 112 11 2 1996 年 1 月 3.88 0.04 2.80 0.07 0.54 111 2 7 1997 年 1 月 4.02 0.01 2.86 0.05 0.54 0.01 106 4 78.1 1.8	8月	3.15	0.03	2.41	0.07	0.52	0.02	116	2	177	4
3月 3.39 0.08 2.55 0.06 0.54 - 113 44 174 9 1994 年 1 月 3.52 0.01 2.76 0.01 0.52 0.02 105 2 1147 6 3月 3.54 0.04 2.64 0.06 0.51 0.03 109 2 143 22 7月 3.58 0.07 2.68 0.05 0.54 0.01 108 22 144 11 1995 年 1 月 3.67 0.05 2.74 0.04 0.53 0.02 105 3 130 22 1996 年 1 月 3.88 0.04 2.82 0.06 0.54 0.01 - - 111 122 111 3.87 0.09 2.82 0.06 0.54 0.01 - - 1111 102 77 197 年 1 月 4.00 0.04 2.83 0.03 0.54 0.02 110 4 8.3 4.3 <td>1993年1月</td> <td>3.38</td> <td>0.07</td> <td>2.56</td> <td>0.03</td> <td>0.51</td> <td>0.01</td> <td>110</td> <td>2</td> <td>177</td> <td>10</td>	1993年1月	3.38	0.07	2.56	0.03	0.51	0.01	110	2	177	10
8月 3.34 0.03 2.58 0.02 0.50 0.01 110 55 146 4 1994年1月 3.54 0.04 2.64 0.06 0.51 0.03 109 2 147 6 3.74 0.04 2.64 0.06 0.51 0.01 108 2 144 111 1995年1月 3.57 0.05 2.74 0.04 0.53 0.01 104 3 129 2 3.81 0.05 2.74 0.04 0.53 0.02 105 3 130 2 1996年1月 3.88 0.04 2.82 0.06 0.54 - - - 112 11 3.9 3.87 0.09 2.82 0.06 0.54 0.01 1.04 102 7.7 19771 4.04 0.04 2.88 0.03 0.54 - 101 15 8.83 4.3 1998<1	3 月	3.39	0.08	2.55	0.06	0.54	-	113	4	174	9
1994 年 1 月 3.52 0.10 2.70 0.01 0.52 0.02 105 2 147 6 $3.F$ 3.54 0.04 2.64 0.06 0.51 0.03 109 2 143 2 $3.F$ 3.67 0.08 2.72 0.05 0.54 0.01 104 3 129 2 $3.F$ 3.75 0.05 2.74 0.04 0.53 0.02 1053 3 130 2 1996 $\mp 1 \beta$ 3.88 0.04 2.80 0.07 0.54 $ 1112$ 11 $3.F$ 3.97 0.08 2.82 0.06 0.53 0.01 104 1 102 7 1997 $\mp 1 \beta$ 4.00 0.04 2.83 0.03 0.54 0.02 106 4 78.1 1.8 3.94 4.00 0.05 2.86 0.07	8月	3.34	0.03	2.58	0.02	0.50	0.01	110	5	146	4
3月 3.54 0.04 2.64 0.06 0.51 0.03 109 2 143 12 1995年1月 3.67 0.08 2.74 0.04 0.53 0.01 104 43 1129 3月 3.75 0.05 2.74 0.04 0.53 0.02 105 3 130 129 1996年1月 3.88 0.04 2.74 0.09 0.54 112 11 3月 3.87 0.09 2.82 0.06 0.01 112 11 3月 3.87 0.09 2.82 0.06 0.01 1.04 1 102 7 1997年1月 4.02 0.00 2.82 0.05 0.01 1.04 1 102 17 3月 4.02 0.04 2.83 0.03 0.51 - 160 4 78.1 1.8 3月 4.02 0.05 2.94	1994年1月	3.52	0.10	2.70	0.01	0.52	0.02	105	2	147	6
$7 \ H$ 3.88 0.07 2.68 0.05 0.51 0.01 108 2 114 111 $1995 \ H \ H$ 3.375 0.05 2.74 0.04 0.53 0.02 105 3 130 2 $8 \ H$ 3.78 0.00 2.74 0.09 0.54 $ 120$ 2 $1996 \ H \ H$ 3.88 0.04 2.80 0.07 0.54 $ 112$ 11 $3 \ H$ 3.87 0.09 2.82 0.06 0.54 $ 104$ 1 102 7 $1997 \ H \ H$ 4.02 0.01 2.86 0.04 0.53 $ 106$ 4 78.1 188 3.91 4.02 0.05 2.94 0.06 0.02 110 5 51.5 $1998 \ H \ H$ 4.20 0.05 2.96 0.05 0.53 0.04	3 月	3.54	0.04	2.64	0.06	0.51	0.03	109	2	143	2
1995 年 1 月 3.67 0.08 2.72 0.05 0.54 0.01 104 3 1129 2 3.81 3.75 0.05 2.74 0.04 0.53 0.02 105 3 130 2 1996 年 1 月 3.88 0.04 2.80 0.07 0.54 $ 1112$ 11 3.47 3.87 0.09 2.82 0.06 0.54 $ 1111$ 2 1997 年 1 7 4.02 0.00 2.86 0.04 0.53 $ 5.6$ 0.7 3.71 4.00 0.04 2.83 0.03 0.54 0.02 1100 5 $8.8.3$ 4.3 1994 2.1 4.20 0.05 2.94 0.06 $ 103$ $7.6.5$ 1.5 1994 2.1 4.34 0.02 2.90 0.03 0.52	7月	3.58	0.07	2.68	0.05	0.53	0.01	108	2	144	11
$3 \ \beta \ \beta$ 3.75 0.05 2.74 0.04 0.53 0.02 105 3 1100 22 $1996 \ 1 \ \beta$ 3.87 0.00 2.74 0.09 0.54 $ -$ <td>1995年1月</td> <td>3.67</td> <td>0.08</td> <td>2.72</td> <td>0.05</td> <td>0.54</td> <td>0.01</td> <td>104</td> <td>3</td> <td>129</td> <td>2</td>	1995年1月	3.67	0.08	2.72	0.05	0.54	0.01	104	3	129	2
$8 \exists$ 3.78 0.10 2.74 0.09 0.54 \cdots \cdots 112 112 $1996 \pm 1 J$ 3.88 0.09 2.82 0.06 0.54 \cdots \cdots 1111 2 $3 J$ 0.08 2.79 0.02 0.53 0.01 104 11 102 7 $1997 \pm 1 J$ 4.02 0.01 2.86 0.04 0.53 \cdots 107 155.4 0.4 $8J$ 4.08 0.09 2.87 0.05 0.54 0.02 110 55 8.3 4.3 $1998 \pm 1 J$ 4.20 0.05 2.94 0.08 0.53 0.01 106 3 76.0 1.5 $1999 \pm 2 J$ 4.34 0.03 2.94 0.03 0.52 0.02 103 1 70.1 16.6 $3JJ$ 4.26 0.66 2.94 0.03 0.52 0.02	3 月	3.75	0.05	2.74	0.04	0.53	0.02	105	3	130	2
1996 $\ensuremath{\in} 1$ $\ensuremath{\mid} 1$ 3.88 0.04 2.80 0.07 0.54 112 1 3 $\ensuremath{\mid} 1$ 0.09 2.82 0.06 0.54 0.01 111 2 8 $\ensuremath{\mid} 1$ 0.08 2.79 0.02 0.53 0.01 104 1 102 7 1997 $\ensuremath{\mid} 1$ 4.00 0.04 2.83 0.03 0.54 107 1 95.6 0.7 3 $\ensuremath{\mid} 1$ 4.02 0.05 2.87 0.05 0.54 0.02 110 5 88.3 4.3 1998 $\ensuremath{\mid} 1$ 4.20 0.05 2.86 0.07 0.52 0.01 106 3 76.6 1.5 1999 $\ensuremath{\mid} 2$ 4.34 0.03 2.94 0.06 0.7 103 1 70.1 1.6 8 4.31 0.02 2.99 0.04 0.52 0.02 103 2<	8月	3.78	0.10	2.74	0.09	0.54	-	-	-	120	2
$3 \ \beta \ $	1996年1月	3.88	0.04	2.80	0.07	0.54	-	-	-	112	1
$8 \ eta$ 3.91 0.08 2.79 0.02 0.53 0.01 104 11 102 7 $1997 \ \mu$ 1 4.02 0.00 2.83 0.03 0.54 $ 0.7$ $3 \ H$ 4.00 0.04 2.83 0.03 0.54 -0.02 110 15 88.3 4.03 $1998 \ \mu$ 1 4.20 0.05 2.94 0.08 0.53 $ 106$ -4 78.1 1.88 3.91 4.25 0.08 2.96 0.07 0.52 0.01 106 3 76.0 1.5 8.91 4.20 0.05 2.86 0.05 0.53 0.03 108 2 76.5 1.5 $1999 \ \mu$ 2 4.34 0.03 2.94 0.04 0.53 0.04 108 3 71.5 1.6 3.91 4.26 0.06 2.90 0.04 0.53 0.04 108 3 71.5 1.6 8.91 4.31 0.02 2.90 0.03 0.52 0.02 110 4 64.2 0.8 $2000 \ \mu$ 1 4.43 0.06 2.93 0.03 0.52 0.02 103 2 58.7 0.7 3.91 4.40 0.07 2.93 0.03 0.52 0.02 106 1 57.5 1.9 $2001 \ \mu$ 1 4.63 0.06 3.03 0.51 0.03 104 1 57	3 月	3.87	0.09	2.82	0.06	0.54	0.01	-	-	111	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8月	3.91	0.08	2.79	0.02	0.53	0.01	104	1	102	7
3月 4.00 0.04 2.83 0.03 0.54 107 11 95.4 0.4 8月 4.08 0.09 2.87 0.05 0.54 0.02 110 5 88.3 4.3 1998年1月 4.20 0.05 2.94 0.08 0.53 106 4 76.5 1.5 8月 4.20 0.05 2.86 0.05 0.53 0.03 108 2 76.5 1.5 1999年2月 4.34 0.03 2.94 0.06 103 1 70.1 1.6 3月 4.26 0.06 2.90 0.03 0.52 0.02 110 4 64.2 0.8 2000年1月 4.43 0.06 2.93 0.03 0.51 0.02 106 1 57.5 1.9 8月 4.43 0.06 2.94 0.06 0.51 0.02 108 1 50.1 50.5	1997年1月	4.02	0.10	2.86	0.04	0.53	-	-	-	95.6	0.7
$8 月$ 4.08 0.09 2.87 0.05 0.54 0.02 110 5 88.3 4.3 $1998 \# 1 \Pi$ 4.20 0.05 2.94 0.08 0.53 $ 106$ 4 78.1 1.8 3Π 4.25 0.08 2.96 0.07 0.52 0.01 106 3 76.5 1.5 $1999 \# 2 \Pi$ 4.34 0.03 2.94 0.06 $ 103$ 1 70.1 1.6 3Π 4.26 0.06 2.90 0.03 0.52 0.02 1100 4 64.2 0.8 $2000 \# 1 \Pi$ 4.43 0.06 2.93 0.03 0.52 0.02 106 1 57.5 1.9 3Π 4.40 0.07 2.94 0.05 0.02 108 1 50.1 5.5 $2001 \# 1 \Pi$ 4.60 0.05 3.04	3 月	4.00	0.04	2.83	0.03	0.54	-	107	1	95.4	0.4
1998年1月 4.20 0.05 2.94 0.08 0.53 106 44 78.1 1.8 3月 4.25 0.08 2.96 0.07 0.52 0.01 106 3 76.0 1.5 8月 4.20 0.05 2.86 0.05 0.53 0.03 108 2 76.5 1.5 1999年2月 4.34 0.03 2.94 0.06 - 103 1 70.1 1.6 3月 4.26 0.06 2.90 0.03 0.53 0.02 110 4 64.2 0.8 2000年1月 4.43 0.06 2.93 0.03 0.53 0.02 106 1 57.5 1.9 8月 4.51 0.03 2.99 0.04 0.52 0.02 108 1 50.1 1.5 2001年1月 4.60 0.05 3.04 0.02 0.51 0.03 104 1 37.6 0.1 </td <td>8月</td> <td>4.08</td> <td>0.09</td> <td>2.87</td> <td>0.05</td> <td>0.54</td> <td>0.02</td> <td>110</td> <td>5</td> <td>88.3</td> <td>4.3</td>	8月	4.08	0.09	2.87	0.05	0.54	0.02	110	5	88.3	4.3
$3 \ \beta \ 4.25$ 0.08 2.96 0.07 0.52 0.01 106 3 76.0 1.5 $8 \ \beta \ 4.20$ 0.05 2.86 0.05 0.53 0.03 108 2 76.5 1.5 $1999 \ 4 \ 2 \ 1$ 4.34 0.03 2.94 0.06 $ 103$ 1 76.5 1.5 $199 \ 4 \ 2 \ 1$ 4.42 0.06 2.90 0.03 0.52 0.02 110 4 64.2 0.8 $2000 \ 1 \ 1$ 4.43 0.06 2.90 0.03 0.53 0.02 103 2 58.7 0.7 $3 \ 1$ 4.40 0.07 2.94 0.06 0.51 0.02 108 1 50.1 1.5 $2001 \ 1 \ 1$ 4.60 0.05 3.04 0.02 0.51 0.03 105 1 50.4 0.5 $3 \ 1$ 4.66 0.06 3.03 0.03 0.51 0.02 106 1 50.7 0.5 $3 \ 1$ 4.56 0.06 3.03 0.03 0.51 0.02 105 1 43.0 0.7 $202 \ 4 \ 1 \ 1$ 4.68 0.03 3.11 0.60 0.01 105 1 3.57 0.6 $2003 \ 4 \ 1 \ 4.68$ 0.03 3.11 0.06 0.51 0.03 104 1 $3.7.6$ 0.1 $3 \ 3 \ 4.69$ 0.05 3.18 0.03 0.50 0.01 105 10.4 $3.5.7$ 0.6 <td>1998年1月</td> <td>4.20</td> <td>0.05</td> <td>2.94</td> <td>0.08</td> <td>0.53</td> <td>-</td> <td>106</td> <td>4</td> <td>78.1</td> <td>1.8</td>	1998年1月	4.20	0.05	2.94	0.08	0.53	-	106	4	78.1	1.8
$8 月$ 4.20 0.05 2.86 0.05 0.53 0.03 108 2 76.5 1.5 $1999 \pm 2 月$ 4.34 0.03 2.94 0.06 $ 103$ 11 70.1 1.6 $3 月$ 4.26 0.06 2.90 0.04 0.53 0.04 108 3 71.5 1.6 $8 月$ 4.31 0.02 2.90 0.03 0.52 0.02 110 4 64.2 0.8 $2000 \pm 1 月$ 4.43 0.06 2.93 0.03 0.53 0.02 103 2 58.7 0.7 $3 月$ 4.40 0.07 2.94 0.06 0.51 0.02 108 1 50.1 1.5 $2001 \pm 1 月$ 4.60 0.05 3.04 0.02 0.51 0.03 105 1 50.7 0.5 $3 月$ 4.56 0.06 3.03 0.03 0.51 0.03 105 1 50.7 0.5 $8 月$ 4.58 0.08 3.08 0.03 0.50 0.01 105 1 37.6 0.1 $2002 \pm 1 月$ 4.62 0.04 3.12 0.01 0.50 0.03 104 1 37.6 0.1 $2002 \pm 1 月$ 4.68 0.03 3.11 0.06 0.51 0.03 104 1 37.6 0.1 $3 B + 4.68$ 0.02 3.22 0.02 0.50 0.01 104 1 37.6 0	3月	4.25	0.08	2.96	0.07	0.52	0.01	106	3	76.0	1.5
1999 $\pm 2 \beta$ 4.340.032.940.06103170.11.6 3β 4.260.062.900.040.530.04108371.51.6 8β 4.310.022.900.030.520.02110464.20.82000 $\mp 1 \beta$ 4.430.062.930.030.530.02106157.51.9 8β 4.400.072.940.060.510.02108150.11.52001 $\mp 1 \beta$ 4.600.053.040.020.510.03105150.40.5 3β 4.560.063.030.030.510.02105150.70.5 8β 4.580.083.080.030.510.02105143.00.72002 $\mp 1 \beta$ 4.620.043.120.010.500.03104137.60.1 3β 4.680.033.110.060.510.03104135.70.62003 $\mp 1 \beta$ 4.680.063.120.050.500.03104135.70.62003 $\mp 1 \beta$ 4.690.023.220.020.500.01103131.80.82003 $\mp 1 \beta$ 4.690.023.220.020.500.01103131.80.42004 $\mp 1 \beta$ 4.690.023.22	8月	4.20	0.05	2.86	0.05	0.53	0.03	108	2	76.5	1.5
3月 4.26 0.06 2.90 0.04 0.53 0.04 108 3 71.5 1.6 8月 4.31 0.02 2.90 0.03 0.52 0.02 110 4 64.2 0.8 2000年1月 4.43 0.06 2.93 0.03 0.53 0.02 103 2 58.7 0.7 3月 4.40 0.07 2.94 0.06 0.51 0.02 106 1 57.5 1.9 8月 4.51 0.03 2.99 0.04 0.52 0.02 106 1 50.1 1.5 2001年1月 4.60 0.05 3.04 0.02 0.51 0.03 105 1 4.30 0.7 2002年1月 4.68 0.08 3.08 0.03 0.50 0.01 105 1 43.0 0.7 2002年1月 4.68 0.03 3.11 0.06 0.51 0.03 104 1 37.1 0.2	1999年2月	4.34	0.03	2.94	0.06	-	-	103	1	70.1	1.6
8月 4.31 0.02 2.90 0.03 0.52 0.02 110 4 64.2 0.8 2000年1月 4.43 0.06 2.93 0.03 0.53 0.02 103 2 58.7 0.7 3月 4.40 0.07 2.94 0.06 0.51 0.02 106 1 57.5 1.9 8月 4.51 0.03 2.99 0.04 0.52 0.02 108 1 50.1 1.5 2001年1月 4.60 0.05 3.04 0.02 0.51 0.03 105 1 50.1 1.5 2001年1月 4.56 0.06 3.03 0.03 0.51 0.02 105 1 50.7 0.5 3月 4.58 0.08 3.08 0.03 0.50 0.01 105 1 43.0 0.7 2002年1月 4.62 0.04 3.12 0.05 0.03 104 1 37.6 0.6	3 月	4.26	0.06	2.90	0.04	0.53	0.04	108	3	71.5	1.6
2000年1月 4.43 0.06 2.93 0.03 0.53 0.02 103 2 58.7 0.7 3月 4.40 0.07 2.94 0.06 0.51 0.02 106 1 57.5 1.9 8月 4.51 0.03 2.99 0.04 0.52 0.02 108 1 50.1 1.5 2001年1月 4.60 0.05 3.04 0.02 0.51 0.03 105 1 50.4 0.5 3月 4.56 0.06 3.03 0.03 0.51 0.02 105 1 50.7 0.5 8月 4.58 0.08 3.08 0.03 0.51 0.02 105 1 43.0 0.7 2002年1月 4.62 0.04 3.12 0.01 0.50 0.03 104 1 37.6 0.1 3月 4.68 0.03 3.11 0.06 0.51 0.03 106 1 35.7 0.6 </td <td>8月</td> <td>4.31</td> <td>0.02</td> <td>2.90</td> <td>0.03</td> <td>0.52</td> <td>0.02</td> <td>110</td> <td>4</td> <td>64.2</td> <td>0.8</td>	8月	4.31	0.02	2.90	0.03	0.52	0.02	110	4	64.2	0.8
3月 4.40 0.07 2.94 0.06 0.51 0.02 106 1 57.5 1.9 8月 4.51 0.03 2.99 0.04 0.52 0.02 108 1 50.1 1.5 2001年1月 4.60 0.05 3.04 0.02 0.51 0.03 105 1 50.4 0.5 3月 4.56 0.06 3.03 0.03 0.51 0.02 105 1 50.7 0.5 8月 4.58 0.08 3.08 0.03 0.50 0.01 105 1 43.0 0.7 2002年1月 4.62 0.04 3.12 0.01 0.50 0.03 104 1 37.6 0.1 3月 4.68 0.03 3.11 0.06 0.51 0.03 104 1 37.7 0.6 2003年1月 4.73 0.06 3.18 0.03 0.50 0.01 103 1 31.8 0.8	2000年1月	4.43	0.06	2.93	0.03	0.53	0.02	103	2	58.7	0.7
8月 4.51 0.03 2.99 0.04 0.52 0.02 108 1 50.1 1.5 2001年1月 4.60 0.05 3.04 0.02 0.51 0.03 105 1 50.4 0.5 3月 4.56 0.06 3.03 0.03 0.51 0.02 105 1 50.7 0.5 8月 4.58 0.08 3.08 0.03 0.50 0.01 105 1 43.0 0.7 2002年1月 4.62 0.04 3.12 0.01 0.50 0.03 104 1 37.6 0.1 3月 4.68 0.03 3.11 0.66 0.51 0.03 106 1 37.7 0.6 2003年1月 4.69 0.06 3.16 0.02 0.51 0.02 104 2 32.5 0.4 3月 4.69 0.02 3.22 0.02 0.50 0.01 103 1 31.8 0.8	3 月	4.40	0.07	2.94	0.06	0.51	0.02	106	1	57.5	1.9
2001年1月 4.60 0.05 3.04 0.02 0.51 0.03 105 1 50.4 0.5 3月 4.56 0.06 3.03 0.03 0.51 0.02 105 1 50.7 0.5 8月 4.58 0.08 3.08 0.03 0.50 0.01 105 1 43.0 0.7 2002年1月 4.62 0.04 3.12 0.01 0.50 0.03 104 1 37.6 0.1 3月 4.68 0.03 3.11 0.06 0.51 0.03 104 1 37.1 0.2 8月 4.60 0.06 3.12 0.05 0.50 0.03 106 1 35.7 0.6 2003年1月 4.69 0.05 3.18 0.03 0.50 0.01 103 1 31.8 0.8 8月 4.69 0.02 3.22 0.02 0.50 0.01 103 1 28.4 0.4 </td <td>8月</td> <td>4.51</td> <td>0.03</td> <td>2.99</td> <td>0.04</td> <td>0.52</td> <td>0.02</td> <td>108</td> <td>1</td> <td>50.1</td> <td>1.5</td>	8月	4.51	0.03	2.99	0.04	0.52	0.02	108	1	50.1	1.5
3月 4.56 0.06 3.03 0.03 0.51 0.02 105 1 50.7 0.5 8月 4.58 0.08 3.08 0.03 0.50 0.01 105 1 43.0 0.7 2002年1月 4.62 0.04 3.12 0.01 0.50 0.03 104 1 37.6 0.1 3月 4.68 0.03 3.11 0.06 0.51 0.03 104 1 37.1 0.2 8月 4.60 0.06 3.12 0.05 0.50 0.03 106 1 35.7 0.6 2003年1月 4.73 0.06 3.16 0.02 0.51 0.02 104 2 32.5 0.4 3月 4.69 0.05 3.18 0.03 0.50 0.01 103 1 28.4 0.4 2004年1月 4.71 0.06 3.26 0.03 0.50 0.01 99.5 0.8 26.6 0.3	2001年1月	4.60	0.05	3.04	0.02	0.51	0.03	105	1	50.4	0.5
8月 4.58 0.08 3.08 0.03 0.50 0.01 105 1 43.0 0.7 2002年1月 4.62 0.04 3.12 0.01 0.50 0.03 104 1 37.6 0.1 3月 4.68 0.03 3.11 0.06 0.51 0.03 104 1 37.1 0.2 8月 4.60 0.06 3.12 0.05 0.50 0.03 106 1 35.7 0.6 2003年1月 4.73 0.06 3.16 0.02 0.51 0.02 104 2 32.5 0.4 3月 4.69 0.05 3.18 0.03 0.50 0.01 103 1 31.8 0.8 8月 4.68 0.02 3.22 0.02 0.50 0.01 103 1 28.4 0.4 2004年1月 4.71 0.06 3.26 0.02 0.02 99.3 0.8 26.6 0.3	3月	4.56	0.06	3.03	0.03	0.51	0.02	105	1	50.7	0.5
2002年1月 4.62 0.04 3.12 0.01 0.50 0.03 104 1 37.6 0.1 3月 4.68 0.03 3.11 0.06 0.51 0.03 104 1 37.6 0.1 8月 4.60 0.06 3.12 0.05 0.50 0.03 106 1 35.7 0.6 2003年1月 4.73 0.06 3.16 0.02 0.51 0.02 104 2 32.5 0.4 3月 4.69 0.05 3.18 0.03 0.50 0.01 103 1 31.8 0.8 8月 4.68 0.02 3.22 0.02 0.50 0.02 100 1 28.4 0.4 2004年1月 4.71 0.06 3.26 0.03 0.50 0.01 99.5 0.8 26.6 0.3 3月 4.69 0.02 3.27 0.01 0.50 0.02 99.3 0.8 26.6 0.4	8月	4.58	0.08	3.08	0.03	0.50	0.01	105	1	43.0	0.7
3月 4.68 0.03 3.11 0.06 0.51 0.03 104 1 37.1 0.2 8月 4.60 0.06 3.12 0.05 0.50 0.03 106 1 35.7 0.6 2003年1月 4.73 0.06 3.16 0.02 0.51 0.02 104 2 32.5 0.4 3月 4.69 0.05 3.18 0.03 0.50 0.01 103 1 31.8 0.8 8月 4.68 0.02 3.22 0.02 0.50 0.02 100 1 28.4 0.4 2004年1月 4.71 0.06 3.26 0.03 0.50 0.01 99.5 0.8 26.6 0.3 3月 4.69 0.02 3.27 0.01 0.50 0.02 99.3 0.8 26.6 0.4 8月 4.70 0.03 3.30 0.02 0.50 0.01 99.0 0.7 21.9 0.3	2002年1月	4.62	0.04	3.12	0.01	0.50	0.03	104	1	37.6	0.1
8月 4.60 0.06 3.12 0.05 0.50 0.03 106 1 35.7 0.6 2003年1月 4.73 0.06 3.16 0.02 0.51 0.02 104 2 32.5 0.4 3月 4.69 0.05 3.18 0.03 0.50 0.01 103 1 31.8 0.8 8月 4.68 0.02 3.22 0.02 0.50 0.02 100 1 28.4 0.4 2004年1月 4.71 0.06 3.26 0.03 0.50 0.01 99.5 0.8 26.6 0.3 3月 4.69 0.02 3.27 0.01 0.50 0.02 99.3 0.8 26.6 0.4 8月 4.70 0.03 3.26 0.02 0.49 0.01 99.0 0.7 23.8 0.6 2005年1月 4.74 0.03 3.30 0.02 0.50 0.01 98.0 0.7 21.9 0.	3月	4.68	0.03	3.11	0.06	0.51	0.03	104	1	37.1	0.2
2003年1月 4.73 0.06 3.16 0.02 0.51 0.02 104 2 32.5 0.4 3月 4.69 0.05 3.18 0.03 0.50 0.01 103 1 31.8 0.8 8月 4.68 0.02 3.22 0.02 0.50 0.02 100 1 28.4 0.4 2004年1月 4.71 0.06 3.26 0.03 0.50 0.01 99.5 0.8 26.6 0.3 3月 4.69 0.02 3.27 0.01 0.50 0.02 99.3 0.8 26.6 0.4 8月 4.70 0.03 3.26 0.02 0.49 0.01 99.0 0.7 23.8 0.6 2005年1月 4.74 0.03 3.30 0.02 0.50 0.01 98.0 0.7 21.9 0.3 3月 4.78 0.02 3.30 0.02 0.50 0.01 99.4 0.7 21.9	8月	4.60	0.06	3.12	0.05	0.50	0.03	106	1	35.7	0.6
3月 4.69 0.05 3.18 0.03 0.50 0.01 103 1 31.8 0.8 8月 4.68 0.02 3.22 0.02 0.50 0.02 100 1 28.4 0.4 2004年1月 4.71 0.06 3.26 0.03 0.50 0.01 99.5 0.8 26.6 0.3 3月 4.69 0.02 3.27 0.01 0.50 0.02 99.3 0.8 26.6 0.4 8月 4.70 0.03 3.26 0.02 0.49 0.01 99.0 0.7 23.8 0.6 2005年1月 4.74 0.03 3.30 0.02 0.50 0.01 98.0 0.7 21.9 0.3 3月 4.78 0.02 3.30 0.02 0.50 0.01 99.4 0.7 21.9 0.9 8月 4.73 0.01 3.29 0.02 0.49 0.01 97.5 0.7 20.8 0	2003年1月	4.73	0.06	3.16	0.02	0.51	0.02	104	2	32.5	0.4
8月 4.68 0.02 3.22 0.02 0.30 0.02 100 1 28.4 0.4 2004年1月 4.71 0.06 3.26 0.03 0.50 0.01 99.5 0.8 26.6 0.3 3月 4.69 0.02 3.27 0.01 0.50 0.02 99.3 0.8 26.6 0.4 8月 4.70 0.03 3.26 0.02 0.49 0.01 99.0 0.7 23.8 0.6 2005年1月 4.74 0.03 3.30 0.02 0.50 0.01 99.0 0.7 21.9 0.3 3月 4.78 0.02 3.30 0.02 0.50 0.01 99.4 0.7 21.9 0.9 8月 4.73 0.01 3.29 0.02 0.49 0.01 97.5 0.7 20.8 0.3 2006年1月 4.76 0.03 3.32 0.02 0.49 0.02 96.7 0.4 19.2	3月	4.69	0.05	3.18	0.03	0.50	0.01	103	1	31.8	0.8
2004年1月 4.71 0.06 3.26 0.03 0.50 0.01 99.5 0.8 26.6 0.3 3月 4.69 0.02 3.27 0.01 0.50 0.02 99.3 0.8 26.6 0.4 8月 4.70 0.03 3.26 0.02 0.49 0.01 99.0 0.7 23.8 0.6 2005年1月 4.74 0.03 3.30 0.02 0.50 0.01 99.0 0.7 23.8 0.6 2005年1月 4.78 0.02 3.30 0.02 0.50 0.01 99.4 0.7 21.9 0.3 3月 4.78 0.02 3.30 0.02 0.50 0.01 99.4 0.7 21.9 0.9 8月 4.73 0.01 3.29 0.02 0.49 0.01 97.5 0.7 20.8 0.3 2006年1月 4.76 0.03 3.32 0.02 0.49 0.02 96.7 0.4 19.2 <td>8月</td> <td>4.68</td> <td>0.02</td> <td>3.22</td> <td>0.02</td> <td>0.50</td> <td>0.02</td> <td>100</td> <td>1</td> <td>28.4</td> <td>0.4</td>	8月	4.68	0.02	3.22	0.02	0.50	0.02	100	1	28.4	0.4
3 月 4.69 0.02 3.27 0.01 0.30 0.02 99.3 0.8 26.6 0.4 8月 4.70 0.03 3.26 0.02 0.49 0.01 99.0 0.7 23.8 0.6 2005 年 1 月 4.74 0.03 3.30 0.02 0.50 0.01 98.0 0.7 21.9 0.3 3 月 4.78 0.02 3.30 0.02 0.50 0.01 99.4 0.7 21.9 0.9 8 月 4.73 0.01 3.29 0.02 0.49 0.01 97.5 0.7 20.8 0.3 2006 年 1 月 4.76 0.03 3.32 0.02 0.49 0.02 96.7 0.4 19.2 0.2 3 月 4.77 0.03 3.32 0.01 0.50 0.02 96.0 1.1 18.6 0.3 8 月 4.75 0.07 3.33 0.02 0.48 0.02 97.0 0.6 16.2 0.4	2004年1月	4.71	0.06	3.26	0.03	0.50	0.01	99.5	0.8	26.6	0.3
3月 4.70 0.03 3.20 0.02 0.49 0.01 99.0 0.7 23.8 0.6 2005年1月 4.74 0.03 3.30 0.02 0.50 0.01 98.0 0.7 21.9 0.3 3月 4.78 0.02 3.30 0.02 0.50 0.01 99.4 0.7 21.9 0.9 8月 4.73 0.01 3.29 0.02 0.49 0.01 99.4 0.7 21.9 0.9 2006年1月 4.76 0.03 3.32 0.02 0.49 0.01 97.5 0.7 20.8 0.3 2006年1月 4.76 0.03 3.32 0.02 0.49 0.02 96.7 0.4 19.2 0.2 3月 4.77 0.03 3.32 0.01 0.50 0.02 96.0 1.1 18.6 0.3 8月 4.75 0.07 3.33 0.02 0.48 0.02 97.0 0.6 16.2	う月	4.69	0.02	5.27 2.90	0.01	0.30	0.02	99.3	0.8	20.0	0.4
2005 年 1 万 4.74 0.05 5.30 0.02 0.30 0.01 98.0 0.7 21.9 0.3 3月 4.78 0.02 3.30 0.02 0.50 0.01 99.4 0.7 21.9 0.9 8月 4.73 0.01 3.29 0.02 0.49 0.01 97.5 0.7 20.8 0.3 2006 年 1 月 4.76 0.03 3.32 0.02 0.49 0.02 96.7 0.4 19.2 0.2 3月 4.77 0.03 3.32 0.01 0.50 0.02 96.0 1.1 18.6 0.3 8月 4.75 0.07 3.33 0.02 0.48 0.02 97.0 0.6 16.2 0.4	0月	4.70	0.03	0.20 9.90	0.02	0.49	0.01	99.0	0.7	20.0 91.0	0.0
3万 4.78 0.02 3.30 0.02 0.30 0.01 39.4 0.7 21.9 0.9 8月 4.73 0.01 3.29 0.02 0.49 0.01 97.5 0.7 20.8 0.3 2006年1月 4.76 0.03 3.32 0.02 0.49 0.02 96.7 0.4 19.2 0.2 3月 4.77 0.03 3.32 0.01 0.50 0.02 96.0 1.1 18.6 0.3 8月 4.75 0.07 3.33 0.02 0.48 0.02 97.0 0.6 16.2 0.4	2003年1月 9月	4.74	0.03	0.00 3.00	0.02	0.50	0.01	90.0 00 4	0.7	21.9 91.0	0.0
2006年1月 4.75 0.01 3.25 0.02 0.49 0.01 51.5 0.7 20.8 0.3 3月 4.77 0.03 3.32 0.02 0.49 0.02 96.7 0.4 19.2 0.2 3月 4.77 0.03 3.32 0.01 0.50 0.02 96.0 1.1 18.6 0.3 8月 4.75 0.07 3.33 0.02 0.48 0.02 97.0 0.6 16.2 0.4	3 万 & 月	4.70	0.02	3.00	0.02	0.50	0.01	99.4 07 5	0.7	21.J 20.8	0.9
2000 $+ 171$ 4.70 0.03 0.32 0.02 0.43 0.02 50.7 0.4 19.2 0.2 3月 4.77 0.03 3.32 0.01 0.50 0.02 96.0 1.1 18.6 0.3 8月 4.75 0.07 3.33 0.02 0.48 0.02 97.0 0.6 16.2 0.4	0月 2006年1日	4.70	0.01	0.49 2.29	0.02	0.49	0.01	91.0	0.7	10.0	0.0
8月 4.75 0.07 3.33 0.02 0.48 0.02 97.0 0.6 16.2 0.4	2000年1月 3日	4 77	0.03	3.32	0.02	0.40	0.02	96.0	11	18.6	0.2
	8月	4.75	0.07	3.33	0.02	0.48	0.02	97.0	0.6	16.2	0.4
表 2-資-2(2) 北海道における特定物質等の大気中のバックグラウンド濃度の経年変化(続き)

								(単位	. pptv)	
	ハロン-	1211	ハロン	-1301	ハロン	-2402	四塩化樹	炭素	1.1.1-トリク	クロロエタン
試料採取時	濃度	標進 偏差	濃度	標進 偏差	濃度	標進 偏差	濃度	標進 偏差	濃度	標進 偏差
2007年1月	4.71	0.02	3.34	0.04	0.48	0.02	96.5	0.4	16.2	0.1
8月	4.65	0.04	3.35	0.03	0.48	0.02	96.0	0.8	14.4	0.2
2008年1月	4.68	0.08	3.36	0.01	0.46	0.01	95.6	0.6	14.5	0.3
8月	4.56	0.03	3.37	0.01	0.48	0.01	93.4	0.6	11.6	0.1
2009年1月	4.61	0.04	3.40	0.01	0.48	0.01	92.9	0.4	11.6	0.1
8月	4.51	0.03	3.37	0.02	0.47	0.01	93.0	1.2	10.4	0.2
2010年1月	4.48	0.02	3.40	0.01	0.47	0.01	91.7	0.6	9.6	0.2
8月	4.42	0.01	3.43	0.01	0.47	0.01	90.8	0.5	8.5	0.2
12 月	4.43	0.01	3.44	0.02	0.47	0.01	90.6	0.8	8.2	0.1
2011年8月	4.36	0.02	3.51	0.02	0.46	0.01	90.3	0.7	6.8	0.2
12 月	4.37	0.02	3.48	0.02	0.46	0.01	89.6	0.2	6.7	0.1
2012年8月	4.24	0.04	3.46	0.04	0.46	0.01	88.8	0.4	5.6	0.1
12 月	4.22	0.01	3.46	0.02	0.45	0.01	88.9	1.0	5.5	0.1
2013年8月	4.14	0.02	3.50	0.02	0.45	0.01	88.7	0.9	4.8	0.1
12 月	4.11	0.01	3.49	0.02	0.45	0.01	88.6	0.5	4.6	0.1
2014年8月	4.03	0.03	3.51	0.02	0.45	0.01	87.7	0.5	4.0	0.1
12 月	4.02	0.02	3.52	0.03	0.45	0.01	87.3	0.8	3.8	0.1
2015年8月	-	-	-	-	-	-	-	-	-	-
12 月	3.80	0.03	3.52	0.06	0.43	0.01	88.5	1.9	2.8	0.1
2016年8月	3.67	0.03	3.54	0.08	0.42	0.01	85.4	0.3	2.5	0.1
12 月	3.55	0.08	3.49	0.03	0.42	0.01	86.5	1.0	2.4	0.1
2017年8月	3.60	0.03	3.46	0.06	0.42	0.01	84.3	0.6	2.3	0.1
12 月	3.63	0.05	3.48	0.10	0.41	0.01	85.1	1.2	2.3	0.1
2018年8月	3.43	0.02	3.58	0.06	0.41	0.01	81.1	0.4	2.0	0.1
12 月	3.50	0.03	3.46	0.05	0.40	0.01	81.2	0.2	2.0	0.1
2019年8月	3.35	0.03	3.46	0.06	0.40	0.01	80.1	0.5	1.7	0.02
12 月	3.37	0.04	3.59	0.11	0.39	0.02	80.6	0.8	1.7	0.02
2020年8月	3.31	0.04	3.53	0.08	0.39	0.01	80.7	0.9	1.5	0.02
12 月	3.28	0.06	3.49	0.12	0.39	0.01	80.2	0.6	1.5	0.02
2021年8月	3.14	0.03	3.55	0.09	0.38	0.003	77.9	0.5	1.3	0.03
12 月	3.21	0.02	3.48	0.17	0.38	0.003	79.2	0.2	1.3	0.01

(単位:pptv)

※2015年8月の分析時の測定装置配管からのコンタミネーションが考えられ、欠測扱いとした。 ※2015年度の調査から測定装置、試料採取方法等を変更した。

(出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

表 2-資-2(3) 北海道における特定物質等の大気中のバックグラウンド濃度の経年変化

(単位:pptv)

1小4 年	HCF	C-22	HCF	C-141b	HCF	C-142b	臭化	КŦル	HFC-1	134a
武科)## rb;	標準)曲 古 :	標準	ى بەر بەر	標準	e المراجع	標準	油店	標準
採取時期		偏差		偏差	很度	偏差		偏差		偏差
1992年8月	111	2	-	-	4.54	0.75	-	-	-	-
1993年1月	112	6	-	-	5.35	0.37	-	-	-	-
3 月	114	7	-	-	5.37	0.44	-	-	-	-
8月	114	5	-	-	6.27	0.70	-	-	-	-
1994年1月	120	5	-	-	7.00	0.54	-	-	-	-
3月	121	2	-	-	6.61	0.27	-	-	-	-
7月	120	3	-	-	7.45	1.05	-	-	-	-
1995年1月	123	4	-	-	7.78	0.68	-	-	-	-
3月	124	2	-	-	7.68	0.38	-	-	-	-
8月	125	4	-	-	8.52	0.64	-	-	-	-
1996年1月	128	3	-	-	8.94	0.96	-	-	-	-
3月	127	5	-	-	9.60	0.43	-	-	-	-
8月	133	5	-	-	9.94	0.86	-	-	-	-
1997年1月	134	3	-	-	9.88	0.40	-	-	-	-
3月	133	5	-	-	10.0	1.1	-	-	-	-
8月	137	3	-	-	10.4	2.1	-	-	-	-
1998年1月	136	2	-	-	11.2	0.6	-	-	-	-
3月	138	3	-	-	10.8	1.1	11.2	0.5	-	-
8月	142	3	-	-	11.6	0.6	11.7	0.6	-	-
1999年2月	150	2	-	-	12.0	0.4	11.2	0.6	-	-
3月	150	2	-	-	12.2	0.6	10.6	0.0	-	-
8月	149	7	-	-	11.5	0.4	10.4	0.7	-	-
2000年1月	150	3	-	-	13.2	0.4	9.4	0.4	-	-
3 月	150	1	-	-	12.8	1.1	9.5	0.8	-	-
8月	153	2	16.0	1.2	13.4	0.6	10.0	0.6	17.0	0.4
2001年1月	157	2	16.7	0.4	14.4	0.3	9.2	0.4	20.1	1.0
3月	158	2	16.8	0.3	14.1	0.6	10.2	0.9	19.5	1.2
8月	157	3	17.2	0.5	14.1	0.2	9.4	1.0	21.3	0.6
2002年1月	158	2	17.7	0.4	15.3	0.5	9.5	0.5	24.1	1.0
3月	158	2	18.1	0.3	15.4	0.5	8.9	0.3	24.4	1.3
8月	163	2	19.0	0.3	15.2	0.6	10.0	0.6	25.8	0.4
2003年1月	166	1	18.6	0.1	15.4	0.6	9.5	0.1	29.4	0.8
3 月	163	1	19.1	0.2	15.9	0.6	9.5	0.3	28.9	2.0
8月	168	3	20.2	0.7	15.5	0.6	9.6	0.8	30.7	1.0
2004年1月	168	1	20.0	0.6	15.9	0.4	10.3	0.6	32.3	1.1
3月	169	1	20.0	0.4	16.5	0.3	9.6	0.5	33.1	0.6
8月	171	2	19.6	0.2	16.6	0.2	9.4	0.4	34.8	1.4
2005年1月	174	2	19.6	0.1	16.4	0.1	9.4	0.4	36.9	1.0
3月	174	1	20.1	0.8	16.6	0.2	9.8	0.3	37.5	1.2
8月	179	3	20.2	0.3	17.1	0.3	10.2	0.4	40.0	1.5
2006年1月	179	2	20.2	0.1	17.4	0.2	9.1	0.2	41.8	1.0
3月	183	1	20.4	0.3	17.2	0.3	9.5	0.2	43.5	1.4
8月	186	2	20.8	0.6	17.6	0.4	9.5	0.2	44.8	0.8
2007年1月	190	2	21.0	0.5	18.4	0.2	9.4	0.4	46.8	0.9
8月	200	2	22.3	2.0	20.3	0.5	9.8	0.7	50.5	0.4
2008年1月	198	3	20.7	0.5	19.7	0.2	9.4	0.5	51.8	1.6
8月	203	4	22.1	1.3	20.2	0.7	8.7	0.7	54.4	1.3
2009年1月	204	4	21.6	0.6	21.1	0.2	8.7	0.3	56.9	0.4
8月	205	1	21.6	0.1	20.7	0.5	8.9	0.9	57.4	0.7
2010年1月	206	1	22.1	0.4	21.4	0.3	8.3	0.2	59.7	1.4
8月	212	1	22.6	0.4	22.4	0.4	9.1	0.3	65.0	0.9
12 月	220	2	23.1	0.5	22.6	0.4	8.4	0.3	66.2	0.7

※2015年度の調査から測定装置、試料採取方法等を変更した。

(出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

⇒+++1	HCF	C-22	HCF	C-141b	HCF	C-142b	臭化;	メチル	HFC-1	134a
採取時期	濃度	標準 偏差	濃度	標準 偏差	濃度	標準 偏差	濃度	標準 偏差	濃度	標準 偏差
2011年8月	236	2	25.1	0.5	23.2	0.7	10.8	0.8	71.2	0.6
12 月	224	2	24.4	0.5	23.6	0.3	8.5	0.2	72.7	1.0
2012年8月	226	8	25.4	1.4	23.7	0.8	10.7	0.5	74.0	1.6
12 月	229	2	25.9	0.4	23.6	0.2	8.6	0.3	76.4	0.8
2013年8月	233	2	26.2	0.4	24.2	0.2	9.3	0.3	78.8	0.5
12 月	234	2	26.1	0.4	24.2	0.3	8.2	0.1	81.9	0.3
2014年8月	244	3	26.7	0.6	24.4	0.3	9.0	0.2	87.2	2.2
12 月	236	1	26.6	0.3	24.4	0.4	7.7	0.2	89.5	1.3
2015年8月	-	-	-	-	-	-	-	-	-	-
12 月	257	4	26.3	0.5	23.7	0.2	7.4	0.3	94.8	1.7
2016年8月	254	3	26.2	0.2	23.1	0.2	9.0	0.8	96.4	0.8
12 月	256	1	26.0	0.2	23.6	0.2	7.6	0.7	102	0.8
2017年8月	259	2	26.2	0.3	23.5	0.2	8.0	0.4	105	1.3
12 月	260	2	26.1	0.1	23.3	0.2	7.1	0.2	108	1.1
2018年8月	259	2	26.0	0.3	23.3	0.2	7.4	0.6	110	0.6
12 月	260	2	26.3	0.3	23.6	0.2	6.8	0.3	114	1.2
2019年8月	267	3	26.4	0.3	23.3	0.2	7.7	0.8	117	0.7
12 月	272	5	27.4	0.8	23.8	0.6	7.6	0.9	121	2.1
2020年8月	272	6	28.5	1.2	23.8	0.3	8.5	0.4	126	2.0
12 月	271	4	28.3	0.7	23.8	0.6	7.7	0.6	126	1.2
2021年8月	267	3	27.3	0.2	23.3	0.3	9.0	0.5	132	1.7
12 月	272	4	28.1	0.4	23.4	0.6	7.8	0.5	136	1.4

表 2-資-2(3) 北海道における特定物質等の大気中のバックグラウンド濃度の経年変化(続き)

(単位:pptv)

※2015年8月の分析時の測定装置配管からのコンタミネーションが考えられ、欠測扱いとした。

※2015年度の調査から測定装置、試料採取方法等を変更した。

(出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

表 2-資-2(4)	北海道におけ	る特定物質等の大気中の	バックグラウ	ウンド濃 月	隻の経年変化
------------	--------	-------------	--------	---------------	--------

(単位:pptv)

=++∞[HFC	-134	HFC	-143	HFC-245fa		HFC-3	865mfc	HFC-227ea	
	通田	標準	通田	標準	進中	標準	通田	標準	通田	標準
休取时别	侲渂	偏差	侲渂	偏差	侲皮	偏差	侲皮	偏差	侲渂	偏差
2019年8月	0.2	0.02	< 0.2	-	3.6	0.08	1.3	0.04	1.9	0.03
12 月	0.3	0.03	< 0.2	-	4.1	0.3	1.4	0.1	2.0	0.07
2020年8月	0.2	0.02	< 0.2	-	4.0	0.1	1.3	0.06	2.1	0.08
12 月	0.3	0.04	< 0.2	-	4.0	0.08	1.4	0.07	2.2	0.1
2021年8月	0.3	0.01	< 0.2	-	5.2	2	1.6	0.4	2.3	0.05
12 月	0.4	0.01	< 0.2	-	4.4	0.2	1.4	0.03	2.4	0.1

(出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

表 2-資-2(5) 北海道における特定物質等の大気中のバックグラウンド濃度の経年変化

(単位:pptv)

业4∈	HFC-	236cb	HFC-	HFC-236ea		236fa	HFC-	245ca	HFC-43	B-10mee
武州	進中	標準	進田	標準	進中	標準	進由	標準	進中	標準
休取时期	侲渂	偏差	侲渂	偏差	侲渂	偏差	侲艮	偏差	侲艮	偏差
2019年8月	< 0.1	-	< 0.09	-	0.19	0.01	< 0.07	-	0.3	0.02
12 月	< 0.1	-	< 0.09	-	0.20	0.01	< 0.07	-	0.3	0.04
2020年8月	< 0.1	-	< 0.09	-	0.21	0.01	< 0.07	-	0.3	0.02
12 月	< 0.1	-	< 0.09	-	0.22	0.01	< 0.07	-	0.3	0.02
2021年8月	< 0.1	-	< 0.09	-	0.24	0.08	< 0.07	-	0.3	0.03
12 月	< 0.1	-	< 0.09	-	0.24	0.06	< 0.07	-	0.3	0.02

(出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

表 2-資-2(6) 北海道における特定物質等の大気中のバックグラウンド濃度の経年変化

(単位:pptv)

=+w1	HFO	C-32	HFC	-125	HFC-1		HFO	C-41	HFC	-152
武将	渔中	標準	渔田	標準	渔中	標準	進中	標準	渔田	標準
休以时别	侲皮	偏差	侲尺	偏差	侲皮	偏差	侲皮	偏差	侲皮	偏差
2019年8月	22.1	0.2	32.2	0.4	26.7	0.2	< 0.3	-	< 0.2	-
12 月	25.3	2	34.8	0.9	28.0	0.7	< 0.3	-	< 0.2	-
2020年8月	27.1	2	36.8	0.8	29.0	0.4	< 0.3	-	< 0.2	-
12 月	27.5	0.9	37.6	0.3	29.5	0.5	< 0.3	-	< 0.2	-
2021年8月	28.8	0.3	40.5	0.6	30.3	0.4	< 0.3	-	< 0.2	-
12 月	32.9	1	42.4	0.7	31.4	0.8	< 0.3	-	< 0.2	-

(出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

表 2-資-2(7) 北海道における特定物質等の大気中のバックグラウンド濃度の経年変化

			(+-1-1	. pptt/		
⇒+ 小!	HFC	-152a	HFC-23			
採取時期	濃度	標準 偏差	濃度	標準 偏差		
2019 年 8 月	9.3	0.2	34.6	1		
12 月	12.2	2	35.9	0.5		
2020年8月	9.9	0.7	36.1	0.6		
12 月	12.2	1	35.7	0.4		
2021 年 8 月	9.6	0.2	32.8	0.3		
12 月	12.0	0.5	35.0	0.7		

(単位:pptv)

(出典)環境省 令和3年度フロン等オゾン層影響微量ガス等監視調査

参考資料 3. 川崎における特定物質等の大気中濃度の経年変化

環境省調査により川崎(都市近郊)で観測された特定物質等の大気中濃度の経年変化は表 2-資-3のとおりであった。なお、本文中の図 2-3-18 (p.115~122) には経年変化がグラフ化され ている。

表 2-資-3 川崎市における特定物質等の大気中濃度

(単位:pptv)

対象物質	CFC-11				CFC-12			
調査期間	中央値	80%值	20%値	データ数	中央値	80%值	20%値	データ数
1991年3月~1992年2月	420	570	350	3,880	720	1,000	590	3,905
1992年3月~1993年2月	370	510	300	4,194	650	880	550	4,195
1993年3月~1994年2月	320	390	290	4,297	560	760	540	4,296
1994年3月~1995年2月	300	380	270	4,101	610	780	550	4,100
1995年3月~1996年2月	300	370	270	4,024	590	670	550	4,015
1996年3月~1997年2月	280	320	260	4,065	570	650	540	4,064
1997年3月~1998年2月	280	300	260	3,718	600	720	540	3,727
1998年3月~1998年12月	280	320	270	3,023	630	760	540	3,020
1999年3月~2000年2月	290	320	270	4,159	600	700	570	4,159
2000年3月~2001年2月	300	330	280	3,812	580	640	560	3,809
2001年3月~2002年2月	290	330	280	4,220	620	680	580	4,219
2002年3月~2003年2月	290	320	280	4,162	590	630	570	4,159
2003年3月~2004年2月	280	310	270	4,304	580	610	560	4,304
2004年3月~2005年2月	280	310	270	4,195	570	600	560	4,193
2005年3月~2006年2月	280	300	270	4,012	570	590	550	4,009
2006年3月~2007年2月	290	360	270	1,519	570	600	550	1,516
2007年3月~2008年2月	310	330	280	1,474	590	630	560	1,467
2008年3月~2009年2月	270	300	260	1,594	560	580	550	1,593
2009年3月~2010年2月	260	270	250	1,640	550	570	540	1,642
2010年3月~2011年2月	260	270	250	1,595	560	570	540	1,605
2011年3月~2012年2月	250	270	240	1,517	550	560	530	1,511
2012年3月~2013年2月	260	270	250	1,714	560	570	540	1,716
2013年3月~2014年2月	250	260	240	1,734	540	550	530	1,735
2014年3月~2015年2月	250	260	240	1,720	540	550	530	1,720
2015年3月~2016年2月	240	250	240	1,158	520	530	500	1,158
2016年3月~2017年2月	250	260	240	1,420	520	530	520	1,420
2017年3月~2018年2月	240	250	240	1,592	520	530	510	1,592
2018年3月~2019年2月	240	250	240	1,525	520	520	520	1,525
2019年3月~2020年2月	240	240	230	1,334	520	520	520	1,334
2020年3月~2021年2月	240	240	230	1,677	510	520	510	1,677
2021年3月~2022年2月	230	240	230	1,581	520	530	510	1,581

対象物質		CFC-113				,1,1・トリ:	クロロエタ	マン
調査期間	中央値	80%値	20%値	データ数	中央値	80%値	20%値	データ数
1991年3月~1992年2月	480	1,100	230	3,907	1,700	4,600	700	3,838
1992年3月~1993年2月	270	620	150	4,192	1,000	2,500	470	4,140
1993年3月~1994年2月	300	680	140	4,298	670	1,700	330	4,241
1994年3月~1995年2月	160	310	110	4,098	440	1,100	230	3,955
1995年3月~1996年2月	140	250	100	3,992	370	760	230	4,003
1996年3月~1997年2月	110	180	100	4,060	240	500	160	4,070
1997年3月~1998年2月	110	170	90	3,720	120	210	90	3,829
1998年3月~1998年12月	100	150	80	3,021	90	140	80	3,021
1999年3月~2000年2月	90	120	80	4,159	70	90	60	4,149
2000年3月~2001年2月	90	100	80	3,813	60	70	50	3,822
2001年3月~2002年2月	80	90	80	4,220	50	60	40	4,213
2002年3月~2003年2月	80	90	80	4,153	40	50	40	4,171

2003年3月~2004年2月	80	90	80	4,304	30	40	30	4,295
2004年3月~2005年2月	80	90	80	4,194	30	30	20	4,229
2005年3月~2006年2月	80	80	80	4,007	20	30	20	3,985

※2015年10月から新規システム導入に伴いGC/MSの条件を変更した。

(出典)環境省 平成17年度フロン等オゾン層影響微量ガス監視調査

及び令和3年度フロン等オゾン層影響微量ガス等監視調査

表 2-資-3 川崎市における特定物質等の大気中濃度(続き)

(単位:	optv)
------	-------

対象物質		四塩	化炭素	
- 詞 <u></u> (1) 	中央値	80%值	20%値	データ数
1991年3月~1992年2月	160	210	140	3,831
1992年3月~1993年2月	130	170	120	4,134
1993年3月~1994年2月	130	150	120	4,231
1994年3月~1995年2月	120	130	110	3,932
1995年3月~1996年2月	120	130	110	4,008
1996年3月~1997年2月	110	120	110	4,076
1997年3月~1998年2月	110	120	110	3,835
1998年3月~1998年12月	110	120	110	3,043
1999年3月~2000年2月	110	110	110	4,149
2000年3月~2001年2月	110	110	110	3,825
2001年3月~2002年2月	100	110	100	4,214
2002年3月~2003年2月	100	110	100	4,171
2003年3月~2004年2月	100	110	100	4,297
2004年3月~2005年2月	100	100	100	4,230
2005年3月~2006年2月	100	100	100	3,989

対象物質		HC	FC-22			HCF	C-141b	
· 祠	中央値	80%值	20%値	データ数	中央値	80%值	20%値	データ数
2006年3月~2007年2月	650	1,100	420	1,519	75	140	47	1,519
2007年3月~2008年2月	680	1,600	420	1,477	77	160	44	1,474
2008年3月~2009年2月	490	940	320	1,594	59	120	36	1,594
2009年3月~2010年2月	400	620	300	1,647	43	75	31	1,646
2010年3月~2011年2月	390	610	300	1,607	42	66	31	1,605
2011年3月~2012年2月	360	580	280	1,538	36	53	29	1,536
2012年3月~2013年2月	350	520	290	1,717	37	52	31	1,717
2013年3月~2014年2月	330	480	280	1,736	36	49	30	1,734
2014年3月~2015年2月	350	480	290	1,720	36	48	31	1,720
2015年3月~2016年2月	340	480	290	1,158	33	43	29	1,158
2016年3月~2017年2月	330	420	290	1,420	35	44	30	1,420
2017年3月~2018年2月	320	420	280	1,592	33	43	29	1,592
2018年3月~2019年2月	330	400	290	1,525	35	45	30	1,525
2019年3月~2020年2月	320	410	290	1,334	33	42	29	1,334
2020年3月~2021年2月	320	370	290	1,677	34	43	30	1,677
2021年3月~2022年2月	310	370	280	1,581	38	48	32	1,581

表 2-資-3 川崎市における特定物質等の大気中濃度(続き)

(単位	:	pptv)
-----	---	-------

対象物質		HCF	C-142b			臭化	メチル	
前往舟间	中央値	80%值	20%値	データ数	中央値	80%值	20%值	データ数
2006年3月~2007年2月	28	37	22	1,519	22	35	15	1,519
2007年3月~2008年2月	30	40	25	1,477	13	18	11	1,452
2008年3月~2009年2月	31	43	25	1,594	13	17	11	1,594
2009年3月~2010年2月	27	34	24	$1,\!645$	11	14	10	1,636
2010年3月~2011年2月	30	37	26	1,607	11	15	10	1,607
2011年3月~2012年2月	27	33	23	1,537	10	14	9	1,514
2012年3月~2013年2月	26	32	24	1,717	11	14	9	1,693
2013年3月~2014年2月	26	30	23	1,736	11	14	9	1,734
2014年3月~2015年2月	26	30	24	1,720	10	12	8	1,720
2015年3月~2016年2月	27	31	24	1,158	12	17	9	1,158
2016年3月~2017年2月	27	31	25	1,420	10	13	9	1,420
2017年3月~2018年2月	27	30	25	1,592	11	13	9	1,592
2018年3月~2019年2月	27	30	25	1,525	10	13	8	1,525
2019年3月~2020年2月	27	30	25	1,334	8	10	7	1,334
2020年3月~2021年2月	26	28	24	1,677	9	11	8	1,677
2021年3月~2022年2月	26	28	24	1,581	10	13	9	1,581

対象物質	HFC-134a							
· 洞	中央値	80%值	20%値	データ数				
2006年3月~2007年2月	90	280	42	1,519				
2007年3月~2008年2月	136	280	86	1,477				
2008年3月~2009年2月	111	210	78	1,594				
2009年3月~2010年2月	104	190	78	1,615				
2010年3月~2011年2月	108	180	82	1,599				
2011年3月~2012年2月	105	160	84	1,521				
2012年3月~2013年2月	116	160	84	1,717				
2013年3月~2014年2月	118	180	96	1,736				
2014年3月~2015年2月	124	180	102	1,720				
2015年3月~2016年2月	124	179	105	1,158				
2016年3月~2017年2月	138	196	115	1,419				
2017年3月~2018年2月	140	189	121	1,592				
2018年3月~2019年2月	150	201	129	1,525				
2019年3月~2020年2月	152	203	133	1,334				
2020年3月~2021年2月	158	203	139	1,677				
2021年3月~2022年2月	163	206	145	1,581				

表 2-資-3 川崎市における特定物質等の大気中濃度(続き)

(単位:pptv)

調太期間	対象物質	HFC-134				HFC-143			
前重新间		中央値	80%值	20%値	データ数	中央値	80%值	20%值	データ数
2019年3月~	~2020年2月	0.3	0.3	0.2	1,334	_	_	-	1,334
2020年3月~	~2021 年 2 月	0.2	0.3	0.2	1,664			_	1,664
2021年3月~	~2022 年 2 月	0.2	0.3	0.2	1,581	-	_	_	1,581

(単位:pptv)

対象物質	HFC-245fa				HFC-365mfc			
前往对问	中央値	80%值	20%値	データ数	中央値	80%值	20%値	データ数
2019年3月~2020年2月	10.6	23.4	6.6	1,334	5.7	13.8	2.7	1,334
2020年3月~2021年2月	8.8	18.1	5.8	1,664	5.4	13.2	2.5	1,667
2021年3月~2022年2月	11.0	20.1	6.7	1,581	5.7	13.8	2.6	1,581

(単位:pptv)

対象物質		HFC-227ea				HFC-236cb			
前往舟间	中央値	80%值	20%値	データ数	中央値	80%值	20%値	データ数	
2019年3月~2020年2。	月 2.3	2.9	2.0	1,334		—	—	1,334	
2020年3月~2021年2	月 2.5	3.1	2.2	1,677	_	—	—	1,664	
2021年3月~2022年2	月 2.7	3.3	2.4	1,581	_	_	_	1,504	

(単位:pptv)

対象物質	HFC-236ea				HFC-236fa			
河 但 <i>为</i> 旧	中央値	80%值	20%値	データ数	中央値	80%值	20%值	データ数
2019年3月~2020年2月	_	_	—	1,334	0.22	0.34	0.20	1,334
2020年3月~2021年2月	-	-	_	1,664	0.23	0.44	0.20	1,664
2021年3月~2022年2月	-	_	—	1,581	0.25	0.47	0.22	1,504

(単位:pptv)

対象物質 調本期期		HFC-245ca				HFC-43-10mee			
时间1917年1941月1	中央値	80%值	20%値	データ数	中央値	80%值	20%值	データ数	
2019年3月~2020年2月	-	_	—	1,334	0.4	0.7	0.3	1,334	
2020年3月~2021年2月	-	_	_	1,664	0.5	0.8	0.3	1,677	
2021年3月~2022年2月	-	_	_	1,581	0.5	0.9	0.4	1,581	

(単位:pptv)

調木期則	対象物質	HFC-32						IFC-125		
祠宜舟间		中央値	80%値	20%値	データ数	中央値	80%值	20%値	データ数	
2019年3月	月~2020年2月	97.4	211	56.2	1,334	61.8	106	45.6	1,334	
2020年3月	月~2021年2月	97.1	198	57.4	1,675	65.1	108	48.7	1,677	
2021年3月	月~2022 年 2 月	119	236	71.6	1,581	73.4	116	55.3	1,581	

(単位:pptv)

対象物質	HFC-143a				HFC-41			
前往舟間	中央値	80%值	20%値	データ数	中央値	80%值	20%値	データ数
2019年3月~2020年2月	34.7	48.3	29.9	1,334	—	—	-	1,334
2020年3月~2021年2月	35.8	49.9	31.1	1,677	—	—	_	1,662
2021年3月~2022年2月	37.3	47.9	32.9	1,581	_	_	_	1,581

表 2-資-3 川崎市における特定物質等の大気中濃度(続き)

(単位:pptv)

対象物質		$\rm HFC$ -152				HFC-152a			
祠宜州间		中央値	80%値	20%値	データ数	中央値	80%值	20%値	データ数
2019年3月~	~2020年2月			_	1,334	18.6	34.2	13.2	1,334
2020年3月~	~2021年2月	_	-	_	1,664	15.4	24.5	11.8	1,677
2021年3月~	~2022年2月	_	_	_	1,581	14.2	20.3	11.7	1,581

(単位:pptv)

対象物質		Hł	FC-23	
前1 <u>日</u> 7月1月1	中央値	80%值	20%値	データ数
2019年3月~2020年2月	36.7	44.4	35.0	1,334
2020年3月~2021年2月	36.7	41.8	35.3	1,675
2021年3月~2022年2月	36.1	42.9	33.7	1,581

※2015年10月から新規システム導入に伴いGC/MSの条件を変更した。

3月初日から翌年の2月末日(試料採取場所:川崎市)まで、1日12回(2時間ごと、2006年2月まで)、1 日4~5回(5時間ごと、2006年3月から)、試料採取を行って測定した結果を整理したもの。中央値はN個の測定値を濃度順に並べた0.5×N番目の測定値、80%値は濃度が低い方から0.8×N番目の測定値(60%レンジの上端値)、20%値は濃度が低い方から0.2×N番目の測定値(60%レンジの下端値)。

※年間を通して不検出または散発的にしか検出されない物質の中央値、80%値、20%値については「-」と記載した。

(出典)環境省 平成17年度フロン等オゾン層影響微量ガス監視調査

及び令和3年度フロン等オゾン層影響微量ガス等監視調査

参考資料4.フロン等オゾン層影響微量ガス等監視調査における測定方法の改善点について

北海道および川崎の特定物質等の観測において 2015 年に測定装置システムの更新を行った が、更新当初は安定した測定結果が得られなかった。このためシステムの大気濃縮装置につ いて改良を行い、安定した測定結果が得られることとなった。大気濃縮装置の主な改善点を 以下に示す。

- ・配管のデッドボリュームの低減のため、大気濃縮装置のステンレス配管について、極力径 を細く、長さを短くした(外径 1/4" → 1/8"、1/16")。キャリブレーションガス、キャ ニスターのレギュレータを小型オールメタル VOC フリーに交換。
- ・測定対象物質の損失の低減のため、測定対象物質が通る配管部分は、内面が不活性処理済 みのステンレス配管に交換。
- ・密閉性の向上のため、ナフィオンドライヤーの接続部構成素材で PP およびテフロンを使用 している部分があったためナフィオンチューブ以外はステンレスのものに変更。
- ・汚染の防止のため、ナフィオンドライヤーで使用する乾燥空気を、コンプレッサー圧縮空気から、試料と同じ経路から分岐させた川崎の大気(シリカゲルを通して乾燥)を使用することに変更。
- ・リテンションタイムの安定性向上のため、試料測定時キャリヤーガスの経路変更。
- ・川崎試料については、マニホールド前の配管を冷却。→ 高湿度時期の大気中の水分を効 果的に除去。
- ・その他 濃縮管温度条件の最適化、濃縮管作製の精度向上。

図 2-資-1 フロン測定に用いる大気濃縮装置の構成概要

(単位:ppt)

参考資料 5. 波照間島における特定物質の平均濃度の経年変化

国立環境研究所では、人為汚染の影響が少ない波照間島(沖縄県)と落石岬(北海道)にお いて、特定物質を含むハロカーボン類の観測を行っている。このうち、波照間島における CFC-11、CFC-12 及び CFC-113 について、各月のベースライン濃度を表 2-資-4 に示す。なお、本 文中の図 2-3-9 (p.104) では、これらの特定物質の経年変化がグラフ化されている。

		()	単位:ppt)			(単	位:ppt)
	CFC-11	CFC-12	CFC-13			CFC-11	CFC-12	CFC-13
2004年5月	255.3	541.6	80.1		2008年1月	248.2	541.2	78.2
2004年6月	254.6	541.5	79.8		2008年2月	248.1	540.6	78.3
2004年7月	252.5	540.6	79.8		2008年3月	248.2	541.5	78.2
2004年8月	252.2	541.1	79.7		2008年4月	248.1	541.5	78.1
2004年9月	253.1	540.9	79.6		2008年5月	247.6	540.8	78.0
2004年10月	253.9	541.6	79.4		2008年6月	246.2	539.8	77.6
2004年11月	253.4	542.0	79.3		2008年7月	246.1	540.4	77.8
2004年12月	254.1	543.0	79.6		2008年8月	246.4	541.5	77.7
2005年1月	253.4	541.7	79.1		2008年9月	248.2	_	78.1
2005年2月	252.3	540.3	78.7		2008年10月	246.8	539.1	78.1
2005年3月	252.4	540.1	78.7		2008年11月	247.7	541.5	77.7
2005年4月	252.8	540.1	78.6		2008年12月	246.9	542.5	77.8
2005年5月	252.1	541.1	78.8		2009年1月	246.7	542.7	77.9
2005年6月	253.6	543.6	79.3		2009年2月	246.5	542.7	77.9
2005年7月	253.1	543.2	79.4		2009年3月	246.7	541.6	77.7
2005年8月	252.0	541.8	79.5		2009年4月	246.4	541.5	77.6
2005年9月	253.0	544.8	79.5		2009年5月	246.3	541.2	77.6
2005年10月	253.9	545.8	79.6		2009年6月	244.7	540.8	77.5
2005 年 11 月	_	543.9	79.0		2009年7月	244.5	539.0	77.2
2005年12月	252.8	543.3	78.8		2009年8月	245.0	540.0	77.2
2006年1月	252.7	543.2	78.9		2009年9月	246.8	540.9	77.5
2006年2月	252.7	543.1	78.8		2009年10月	246.7	540.9	77.3
2006年3月	252.4	542.6	78.8		2009年11月	246.9	541.1	77.3
2006年4月	252.4	542.4	78.6		2009年12月	246.0	541.2	76.8
2006年5月	251.3	541.8	78.3		2010年1月	245.2	540.6	76.4
2006年6月	250.1	539.7	78.1		2010年2月	244.8	540.7	76.4
2006年7月	249.0	540.1	78.2		2010年3月	244.8	539.9	76.3
2006年8月	248.9	541.0	78.4		2010年4月	245.0	540.3	76.4
2006年9月	249.1	543.2	78.5		2010年5月	244.0	538.9	76.1
2006年10月	249.9	542.0	78.5		2010年6月	242.5	536.6	75.6
2006年11月	249.7	542.3	78.4		2010年7月	241.2	534.7	75.4
2006年12月	248.6	541.3	78.2		2010年8月	241.7	535.9	75.6
2007年1月	248.8	541.0	78.2		2010年9月	241.8	536.0	75.7
2007年2月	248.1	540.9	78.2		2010年10月	243.0	536.1	75.6
2007年3月	249.0	542.3	78.4		2010年11月	243.7	536.2	75.7
2007年4月	249.7	542.9	78.5		2010年12月	243.5	536.2	75.8
2007年5月	248.8	543.5	78.4		2011年1月	243.0	535.9	75.6
2007年6月	246.9	542.1	78.1		2011 年 2 月	242.9	535.7	75.6
2007年7月	246.4	541.2	77.8		2011年3月	243.5	535.7	75.7
2007年8月	245.6	539.9	77.8		2011 年 4 月	243.6	535.4	75.6
2007年9月	246.4	540.3	77.8		2011年5月	243.2	535.3	75.4
2007年10月	247.1	540.1	77.8		2011年6月	239.9	532.6	75.0
2007年11月	247.3	539.4	77.8		2011年7月	239.9	532.6	75.0
2007年12月	248.5	541.4	78.2		2011 年 8 月	239.8	531.7	75.0

衣 2 頁 4 仮照间面(観側されんしい)11、しい	'U-12, UFU	-113 (7月)	半均债皮
----------------------------	------------	-----------	------

(出典) 国立環境研究所地球システム領域提供データ

表 2-資-4 波照間島で観測された CFC-11、CFC-12、CFC-113の月平均濃度(続き)

		(単	i位:ppt)
	CFC-11	CFC-12	CFC-13
2011年9月	240.9	531.9	75.2
2011 年 10 月	241.0	532.1	75.2
2011 年 11 月	240.5	531.7	75.1
2011 年 12 月	241.5	532.0	74.8
2012年1月	242.0	532.3	75.2
2012 年 2 月	-	-	-
2012年3月	242.5	533.7	75.3
2012 年 4 月	241.3	532.4	75.2
2012 年 5 月	238.9	531.2	74.9
2012年6月	-	529.4	74.4
2012 年 7 月	238.2	528.9	74.5
2012年8月	238.5	528.8	74.5
2012 年 9 月	239.5	529.8	74.6
2012年10月	240.9	530.3	74.7
2012 年 11 月	242.3	530.6	74.7
2012年12月	-	530.3	74.8
2013年1月	239.8	530.3	74.8
2013年2月	239.7	529.8	74.7
2013年3月	240.2	529.6	74.6
2013年4月	240.3	529.4	74.6
2013年5月	239.5	528.0	74.3
2013年6月	238.6	527.3	74.1
2013年7月	237.1	526.6	73.8
2013年8月	-	-	-
2013年9月	238.1	526.0	73.9
2013年10月	238.7	525.2	73.7
2013 年 11 月	239.7	525.8	74.0
2013 年 12 月	-	525.6	74.0
2014年1月	237.5	525.3	73.8
2014年2月	-	525.4	73.7
2014年3月	-	524.6	73.7
2014年4月	238.9	525.1	73.8
2014年5月	-	526.5	74.2
2014年6月	234.2	522.4	72.7
2014年7月	234.2	522.6	73.0
2014年8月	234.5	522.6	73.0
2014年9月	235.3	522.8	73.1
2014年10月	-	523.0	73.3
2014年11月	-	522.6	73.1
2014年12月	237.0	523.4	73.1
2015年1月	236.8	523.4	73.1
2015年2月	235.3	522.5	-
2015年3月	236.1	522.6	72.9
2015年4月	240.9	531.9	75.2

	(単位:ppt)				
	CFC-11	CFC-12	CFC-13		
2015 年 5 月	235.0	522.6	72.8		
2015年6月	233.4	520.6	72.5		
2015 年 7 月	233.5	521.0	72.5		
2015 年 8 月	235.9	520.7	72.4		
2015年9月	-	-	71.9		
2015 年 10 月	234.5	518.8	71.7		
2015 年 11 月	234.2	518.0	71.9		
2015 年 12 月	233.7	517.9	72.0		
2016年1月	234.8	519.1	72.2		
2016年2月	233.9	518.6	72.2		
2016年3月	232.9	519.5	71.9		
2016年4月	232.0	519.0	71.4		
2016年5月	231.4	518.5	71.3		
2016年6月	232.4	518.5	71.4		
2016年7月	232.8	519.6	71.9		
2016年8月	233.1	519.4	71.7		
2016年9月	233.5	-	71.8		
2016年10月	234.8	519.1	-		
2016年11月	234.9	518.7	-		
2016 年 12 月	234.0	518.9	72.2		
2017年1月	235.2	518.4	72.4		
2017年2月	233.9	518.0	71.7		
2017年3月	232.6	517.5	71.6		
2017年4月	230.8	517.1	71.4		
2017 年 5 月	231.0	516.5	71.2		
2017年6月	230.6	516.4	71.2		
2017年7月	232.3	516.7	71.4		
2017年8月	232.0	519.2	71.0		
2017 年 9 月	231.9	518.8	70.8		
2017 年 10 月	231.5	518.9	72.8		
2017 年 11 月	232.2	517.8	71.4		
2017 年 12 月	231.1	-	71.3		
2018年1月	229.6	517.7	69.8		
2018年2月	229.0	516.7	69.7		
2018年3月	228.8	516.4	69.8		
2018年4月	229.2	514.2	-		
2018年5月	232.4	514.3	70.0		
2018年6月	230.8	514.8	69.8		
2018年7月	229.9	516.3	69.5		
2018年8月	235.0	522.6	72.8		
2018年9月	233.4	520.6	72.5		
2018年10月	233.5	521.0	72.5		
2018年11月	235.9	520.7	72.4		
2018年12月	-	-	71.9		

	CFC-11	CFC-12	CFC-13			CFC-11	CFC-12	CFC-13
2019年1月	231.2	516.4	70.7		2021年1月	-	502.8	69.2
2019年2月	229.2	515.4	70.4		2021年2月	_	502.8	69.1
2019年3月	230.5	515.5	70.2		2021年3月	_	502.1	69.0
2019年4月	229.7	515.0	69.6		2021年4月	_	501.5	69.2
2019年5月	229.5	514.3	69.3		2021年5月	-	500.8	69.2
2019年6月	227.8	512.9	68.9		2021年6月	_	_	69.1
2019年7月	227.0	511.0	68.6		2021年7月	-	_	69.4
2019年8月	227.2	511.4	69.0		2021 年 8 月	_	_	68.7
2019年9月	228.2	510.6	69.3		2021年9月	_	_	68.7
2019年10月	228.5	510.4	69.4		2021年10月	-	_	68.8
2019年11月	226.8	508.0	68.6		2021年11月	-	_	68.6
2019年12月	226.8	507.9	68.7		2021年12月	-	498.9	69.2
2020年1月	230.3	507.7	68.9					
2020年2月	229.3	507.2	68.6					
2020年3月	229.1	-	69.0					
2020年4月	227.7	506.5	68.2					
2020年5月	226.5	506.3	67.7					
2020年6月	225.8	504.6	67.5					
2020年7月	225.9	504.5	67.6					
2020年8月	225.9	504.0	67.8					
2020年9月	227.0	504.1	68.5					
2020年10月	225.8	503.7	68.0					
2020年11月	224.3	503.1	67.8	1				

国立環境研究所波照間観測ステーションにおける観測結果。低温濃縮/ガスクロマトグラフ-質量分析計(全自 動)による毎時間観測データを基に、各月ごとに平均値±1 σから外れるデータを省くステップを2度繰り返 してベースライン濃度を算出し、その月平均値を求めた。なお、観測数が不十分な月については欠測としてい る。

(出典)国立環境研究所地球システム領域提供データ

参考資料 6. 都道府県・政令指定都市のオゾン層破壊物質等の観測状況

	CFC-11, CFC-12, CFC-113, CFC-114,四塩化炭素, 1,1,1-トリクロロエタン,
北海道	HCFC-22, HCFC-123, HCFC-141b, HCFC-142 b, HCFC-225ca, HCFC-225cb,
	HFC-134a, 臭化メチル
岩毛県	CFC-11, CFC-12, CFC-113, CFC-114,四塩化炭素, 1,1,1-トリクロロエタン,
	HCFC-22, HCFC-141b, HCFC-142b, 臭化メチル, HCFC-123, HCFC-225
茨城県	CFC-11, CFC-12, CFC-113, 四塩化炭素, 1,1,1-トリクロロエタン, HCFC-22, HCFC-123,
	HCFC-141b, HCFC-142b, HCFC-225ca, HCFC-225cb, HFC-134a
群馬県	CFC-11, CFC-12, CFC-113, CFC-114, 四塩化炭素, 1,1,1-トリクロロエタン, HCFC-22,
	HCFC-141b, HCFC-142b, HCFC-123, HCFC-225ca, HCFC-225cb
埼玉県	CFC-11, CFC-12, CFC-113, 四塩化炭素, 1,1,1-トリクロロエタン,
	HCFC-22, HCFC-141b, HCFC-142b, HFC-134a
千葉県	CFC-11, CFC-113, 四塩化炭素, 1,1,1-トリクロロエタン
東京都	CFC-12, CFC-114, CFC-113,四塩化炭素, 1,1,1-トリクロロエタン, HCFC-22,
	HCFC-123, HCFC-141b, HCFC142b, HCFC-225ca, HCFC-225cb, 臭化メチル
山梨県	CFC-11, CFC-12, CFC-113, CFC-114, 四塩化炭素, 1,1,1-トリクロロエタン
長野県	HFC-134a, HCFC-22, HCFC-142b, HCFC-123, HCFC-141b, HCFC-225ca
愛知県	CFC-11, CFC-12, CFC-113, 四塩化炭素, 1,1,1-トリクロロエタン, HCFC-22,
<i>这</i> 小时代	HFC-134a, HCFC-141b
奈良県	四塩化炭素, 1,1,1-トリクロロエタン
山口県	CFC-11, CFC-12, CFC-113
徳島県	四塩化炭素, 1,1,1-トリクロロエタン
香川県	CFC-11, CFC-12, CFC-113, HCFC-22, HFC-134a
福岡県	CFC-11, CFC-12, CFC-113, CFC-114,四塩化炭素, 1,1,1-トリクロロエタン,臭化メチル
沖縄県	CFC-11, CFC-12, CFC-113, CFC-114,四塩化炭素, 1,1,1-トリクロロエタン
千葉市	CFC-11, CFC-12, CFC-113, CFC-114,四塩化炭素, 1,1,1-トリクロロエタン
	CFC-11, CFC-12, CFC-113, CFC-114,四塩化炭素, 1,1,1-トリクロロエタン,
横浜市	HFC-134a, HCFC-22, HCFC-142b, HCFC-123, HCFC141b, HCFC-225ca,
	HCFC-225cb, 臭化メチル
川崎市	CFC-11, CFC-12, CFC-113, 四塩化炭素, 1,1,1-トリクロロエタン,
7.1ed14	HCFC-22, HCFC-141b, HCFC-142b, HFC-134a
	CFC-11, CFC-12, CFC-113, CFC-114,四塩化炭素, 1,1,1-トリクロロエタン, ブロモメタン
広島市	HFC-134a, HCFC-22, HCFC-123, HCFC-141b, HCFC-142b, HCFC-225ca,
	HCFC-225cb,
福岡市	CFC-11, CFC-12, CFC-113

表 2-資-5 都道府県・政令指定都市におけるオゾン層破壊物質等の観測の状況(令和元年度)

参考資料7.成層圏における特定物質の高度分布

1981年以降、東京大学等により岩手県三陸の宇宙科学研究所(現、宇宙航空研究開発機構) 大気球観測所から揚げた大気球によって採取した成層圏大気について、様々な特定物質の濃度 の高度分布のデータが得られ、成層圏における分布と挙動が明らかにされている。

そのうち、2000年の三陸上空におけるCFC-11、CFC-12、CFC-113、CFC-114の高度分布を 図2-資-2に示す。最も安定で分解しにくいCFC-114は、高度による変化は小さい。CFC-12と CFC-113は紫外線に対する吸収係数が類似しており、上空で同じような割合で分解し減少する。 一方、CFC-11は吸収係数が大きいため成層圏に入ると最も分解しやすく、高度による減衰が 著しい(高度約 5kmごとに1/10 に減少し、成層圏内の10kmで99%が分解して成層圏内に塩 素原子を放出していることを示している)。

図 2-資-2 三陸上空における CFC-11、CFC-12、CFC-113 及び CFC-114 の高度分布 (2000 年 8 月 28 日) (出典)東京大学提供データ

第3部 太陽紫外線の状況

1. 太陽紫外線の概要

1-1.太陽紫外線の概要

紫外線は、波長によって紫外線A:UV-A (315~400nm)、紫外線B:UV-B (280~315nm)、 紫外線C:UV-C (100~280nm)の3種類に分類される。一般的に、紫外線は波長が短いほど生 物に対する有害作用が大きいが、UV-C は大気圏上部の酸素分子及び成層圏のオゾンによって完 全に吸収されてしまうため、オゾン量が多少減少しても地表面には到達せず、生物に対して問題 にはならない。また、UV-Aの照射量はオゾン量の変化の影響をほとんど受けない。

UV-B については、最近の知見によれば、成層圏オゾンが 1%減少した場合、特定の太陽高度角 (23 度)において、約 1.5%増加するという結果が得られている。UV-B は、核酸などの重要な生 体物質に損傷をもたらし、皮膚の光老化(シミやしわ)や皮膚がん発症率の増加、さらに白内障 発症率の増加、免疫抑制など人の健康に影響を与えるほか、陸域、水圏生態系に悪影響を及ぼす ことが懸念される(紫外線の変化による影響の詳細及び UNEP の環境影響評価パネルの 2018 年 報告書要約については第 3 部参考資料 1~5 (p.171~)及び第 4 部巻末資料 3 (p.232~)を参 照)。

1-2. 紫外線の指標

紫外線の強度(紫外線強度)

地表に到達する紫外線の強度は、波長によって異なる。図 3-1-1 の上図に紫外線の大気圏外(細線)及び晴天時の地表(太線)での波長別の強度を示す。大気圏外での強度に比べて地表では、 UV-A はわずかに、UV-B は大きく減衰している。UV-A がわずかに減衰しているのは、主に大気 分子による散乱の影響によるもので、波長が短いほど散乱の影響は大きい。UV-B が大きく減衰し ているのは、主に成層圏オゾンの吸収によるものである。

紫外線の量(紫外線量)

地表に到達する紫外線の量は、紫外線強度の時間積分値である。一日の合計量やこれの月平均 値、年間平均値などとして示される。一日の合計量は太陽光が雲で遮蔽されていない時間の積分 値である日照時間、すなわち天気の影響を大きく受ける。紫外線量は、紫外線強度が強く、太陽 が雲で遮蔽されていない時間が長いほど多くなる。

紅斑紫外線量

紫外線の人体への影響度は波長によって異なる。紅斑紫外線は、人体への紅斑作用影響を示す ために、波長によって異なる影響度で重み付けして波長積分した紫外線強度である。波長毎の人 体への相対影響度は、人の皮膚に紅斑(赤い日焼け)を引き起こす作用波長を示す曲線として国 際照明委員会(CIE)が定義し、ISO 規格化された紅斑作用スペクトル(CIE 紅斑作用スペクト ル)が一般的に用いられている。図 3-1-1の中図に CIE 紅斑作用スペクトルを示す(CIE 紅斑作 用スペクトルの定義は式(1)参照)。UV-B 領域内の波長 280~300nm では相対影響度が高く、 同領域内の波長 300nm から UV-A 領域に入った 320nm にかけて急激に低くなり、320nm 以上 の波長では相対影響度はほとんど0となるが、波長別紫外線強度に CIE 紅斑作用スペクトルを乗 じることにより算出される紅斑紫外線強度は、UV-B 領域を中心に UV-A 領域まで広く分布する (図 3-1-1 下図)。

この値を波長積分して得られるのが、紅斑紫外線量(下図網掛け部分の面積)である。紅斑紫 外線量は、波長によって異なる影響度考慮せずに単純に波長積分した UV-B 強度と比較すると、 人の健康への影響の強さをより的確に反映した指標といえる。

上図は波長別紫外線強度(細線:大気圏外、太線:地表)、中図は CIE 紅斑作用スペクトルの相対影響度、下図は 波長別紅斑紫外線強度。波長別紅斑紫外線強度を波長積分すると紅斑紫外線量(下図網掛け部分)が得られる。 (出典)気象庁 オゾン層観測報告:2010

CIE 紅斑作用スペクトル・・・式(1)

 $\operatorname{Ser}(\lambda) = \begin{cases} 1.0 & (250 \text{nm} < \lambda < 298 \text{nm}) \\ 10^{0.094} & (298 \cdot \lambda) & (298 \text{nm} < \lambda < 328 \text{nm}) \\ 10^{0.015} & (140 \cdot \lambda) & (328 \text{nm} < \lambda < 400 \text{nm}) \end{cases}$

S_{er}:CIE紅斑作用スペクトル λ:波長

UV インデックス

UV インデックスは、地上に到達する紫外線強度のレベルをわかりやすく表す指標として、 WHO(世界保健機関)がWMO(世界気象機関)、UNEP(国連環境計画)などと共同で開発し たもので、一般の人々に紫外線対策の必要性を意識啓発することを狙っている。UV インデック スは、上述の紅斑紫外線強度を日常生活で使いやすい簡単な数値とするために 25mW/m² を1と して指標化したものである。

2

0

6時

8時

(参考) 紫外線対策への UV インデックスの活用方法

※UVインデックスは観測値を四捨五入した値のためゼロも入る。

2002年7月に、WHO、WMO、UNEPなどは共同で、「UVインデックスの運用ガイド」を刊行 し、UVインデックスを活用した紫外線対策の実施を推奨している(WHO,2002)。我が国でも、 2003年に環境省から、紫外線対策の普及を目的として、保健師などを対象に「紫外線環境保健マニ ュアル」が刊行されている(2006年、2008年、2015年改訂)。

UVインデックスは0から11+の値で表され、さらに5つのカテゴリーに分けてカテゴリーごとの 対処法が示されている(表3·1·1)。参考に、国内3地域の7月の時刻別UVインデックスを図3·1·2に 示す。時刻別UVインデックスは月最大値の平均値で、天候等によっては例年この程度の値になる。 札幌を除き、正午を挟む数時間はUVインデックスが8(非常に強い)を超えていることがわかる。 なお、口絵Vには、日本付近の日最大UVインデックスの季節別分布(1997~2008年の平均値と、 2018年値の1997~2008年平均値からの偏差)が掲載されているので、あわせて参考にされたい。

UV インデ・ックス	強度	対策
$0 \sim 2$	弱い	安心して戸外で過ごせる。
$3\sim\!5$	中程度	日中はできるだけ日陰を利用しよう。
$6 \sim 7$	強い	できるだけ、長袖シャツ、日焼け止めクリーム、帽子を利用しよう。
8~10	非常に強い	日中の外出はできるだけ控えよう。
11+	極端に強い	必ず、長袖シャツ、日焼け止めクリーム、帽子を利用しよう。

表 3-1-1 UV インデックスに応じた紫外線対策

12時

図 3-1-2 国内 3 地点における時刻別 UV インデックスの月最大値の 平均値(1994~2008 年の7月) (出典)気象庁提供

14時

16時

18時

(紫外線に関する情報については下記のホームページにて一般に公開されている) 環境省「紫外線環境保健マニュアル」(2006 年、2008 年、2015 年改訂)

10時

https://www.env.go.jp/chemi/matsigaisen2015/full/matsigaisen2015_full.pdf 気象庁「紫外線情報分布図」(紫外線の予測分布図) https://www.jma.go.jp/jp/uv/ 国立環境研究所「UVインデックス」http://db.cger.nies.go.jp/gem/ozon/uv/uv_index.html

1-3. 紫外線強度および紫外線量の変動要因

紫外線強度は、太陽高度、オゾン全量、雲の状況、エアロゾル量、地表面の反射率などの変化 によって変動する。天気は雲量の変化というかたちで紫外線量に影響を与える。

海抜高度の高いところでは、大気層の厚さが薄くなることにより、紫外線強度および紫外線量 が増加する(+10~12%/1,000m)。また、大気汚染や霞といった現象は、地上における大気混濁 度を地域的に増加させ、紫外線強度および紫外線量を減少させる要因となる。

太陽高度とオゾン全量の変化による紫外線強度および紫外線量の変化

太陽高度は紫外線強度に大きく影響し、太陽高度が高いほど一般に紫外線強度は増加する。そのため、オゾン量や雲など、他の条件が同じなら、紫外線強度は1日の中では正午頃、1年の中では夏至前後に最大となり、また国内では緯度の低い地方ほど強い。

なお、太陽高度が同一と仮定すると、オゾン全量が増加するほど UV-B 強度はオゾンによる吸 収を強く受けて減少する。また、オゾン全量が同一のときには、太陽高度が低いほど、地表に到 達する UV-B 強度はオゾン層を斜めに通過するため、オゾンによる吸収の影響を受けて大きく減 少する。

日本国内では、一日の最大太陽高度が高い低緯度地方ほど、太陽が地表よりも高い位置にある 時間(可照時間)が長く、紫外線強度も強くなるため、一日の紫外線量は多くなる。

紫外線強度の季節変動

図 3-1-3 に、つくばで観測された全天日射量、UV インデックス及びオゾン全量の季節変動を示 す。全天日射量が5月に最大となっているのは、太陽高度が高く、晴天の日が多いためである。 6月は、太陽高度が1年のうちで最も高いものの、梅雨の影響があるため、全天日射量はやや小 さくなっている。全天日射量は5月に最大になるものの、UV インデックスはオゾン全量の季節 変動の影響を受け、全天日射量のピークよりも遅れて7~8月に最大になる。これは、中緯度のオ ゾン全量が春に最大になり、その後、秋に向かって徐々に減少していくためである。

なお、UV-A については図には示していないが、全天日射量とほぼ同じ季節変動が見られる。

図 3-1-3 全天日射量と UV インデックスの季節変動

つくばで観測された日積算全天日射量(破線)、日最大 UV インデックス(実線)の月平均値の季節変動及び、オ ゾン全量の1年の変動(点線)を示す(統計期間:1994~2008年)。

(出典)気象庁 オゾン層観測報告:2010

太陽紫外線に関する基礎情報

(参考)実効オゾン全量とUV-B 強度の関係

「太陽高度とオゾン全量の変化による紫外線強度および紫外線量の変化」の項で述べたように、地表面で観測 される UV-B 紫外線強度は太陽高度が高いほど増加し、オゾン全量が多いほど減少する。ここで、オゾン全量、 太陽高度、UV-B 強度の関係について詳しく述べる。

オゾン全量とは、地表面から真上(鉛直方向)の大気中に存在するオゾン量の全量を意味する。UV-B は、地 表面に届くまでに大気中に存在するオゾンによる吸収によって、その強度は減少するため、大気中に存在するオ ゾン量が多いほど UV-B 強度は小さくなる。一方、太陽光が地表面に届くまでに通過する大気層の厚さは、太陽 高度に依存し、太陽高度が高い場合の大気層の厚さは、太陽高度が低い場合に比べて薄い(太陽光が大気中を通 過する距離が短い)。そのため、オゾン全量が同じ場合でも、太陽高度が高いと太陽光が通過する大気層が薄く、 そこに存在するオゾン量が少ないため、太陽高度が低い場合に比べて地表面に届く UV-B は強くなる。

そこで、太陽高度を「大気路程」(air mass:太陽光が通過する大気層の厚さ)で表し、大気路程にオゾン全量 を乗じた「実効オゾン全量」という指標を用いることにより、オゾン全量が紫外線量に与える影響を、太陽高度 の影響を含めて評価がすることが可能となる。

図 3-1-4 に、つくば上空のオゾン全量(NASA 衛星データ TOMS 及び OMI)と正午(つくば南中時)の大気 路程(大気路程最小値)及び実効オゾン全量(大気路程×オゾン全量)を示した。オゾン全量が春季に高濃度を 示した後、秋季にかけて減少し再び増加するのに対して、実効オゾン全量は太陽高度(大気路程)の影響を受け て、7月~8月に最低、12月に最高となる季節変化を示す。

黒の点は2007~2009年のつくば局上空のオゾン全量(NASA衛星データ)、黒太線はその7日間の移動平均を示す。破線はつくば局での大気路程の日最小値を表す(右縦軸:太陽が真上(90°)にある時の大気路程を1とした時の相対比)。さらに、オゾン全量に大気路程を乗じたものが実効オゾン全量(正確には日代表値)で、灰色の点で示されている。灰色の太線は実効オゾン全量の7日間移動平均値を表す。(出典)国立環境研究所提供データ

図 3-1-5 に、有害紫外線モニタリングネットワークの一環で国立環境研究所が実施する 4 観測局(陸別(北海道)、落石(北海道)、つくば(茨城県)、波照間(沖縄県))における実効オゾン全量と紫外線(UV-B)の変化を示した。この図からは、地区、季節を問わず、実効オゾン全量と UV-B 量がきれいな逆相関を示していることが分かる。紫外線の季節変動は、実効オゾン全量を用いることにより明瞭に説明が可能となる。

太陽紫外線に関する基礎情報

雲による影響

雲は太陽光を遮るため、雲量や雲の状態、すなわち天気の変化は紫外線量を顕著に変動させる。図 3-1-6 に、快晴の日の UV インデックスを基準とした、天気ごとの UV インデックスの 相対的な割合を示す。これによると、晴、薄曇(全天が主に上層の薄い雲で覆われて薄日が射し ている状態)、曇(全天が厚い雲で覆われている状態)、雨と天気が変化するにつれ、快晴の場 合に比べて UV インデックスは減少していく。雨が降っている場合には、快晴時の 2~4 割ま で減少する。

なお、雲は太陽光を反射・散乱することによって、局地的に紫外線強度を増加させる場合が ある。例えば、雲量が90%の場合でも、太陽に雲がかかっておらず、かつ積雲が存在している 場合には散乱成分が多くなり、快晴時に比べて最大で約27%の紫外線強度の増加が観測され たことがある(Estupinan et al.,1996)。これまでに国内で観測された紅斑紫外線量の時別値 が最大値となった事例(表3-1-2)をみてみると、全ての事例で上空の雲による太陽光の散乱に より紫外線強度が増加したと見られる事例であった。

「雲が全くないと仮定した場合のUVインデックスの推定値」を100とした場合の天気毎に観測されたUVイン デックス(相対値)。札幌、つくば、鹿児島、那覇の1997~2010年(鹿児島は1997年~2005年3月)のデータ を用いて算出した。なお、「快晴」は雲量0~1、「晴れ」は雲量2~8、「曇」「薄曇」は雲量9~10であって、降 水現象がない状態を示す。このうち、「薄曇」は上層の雲が中・下層の雲より多い状態をいう。ばらつきの範囲 (平均値±標準偏差)を縦線で示す。

(出典) 気象庁ホームページ <u>https://www.data.jma.go.jp/env/uvhp/3-73uvindex mini.html</u>

百日	観測地点							
「「「」」「「」」」「」」」」」」」」」」」」」」」」」」」」」」」」」」」	札幌	つくば	鹿児島	那覇	南極昭和基地			
時別值(mW/m ²)	244	294	327	349	314			
UV インデックス換算値	9.8	11.8	13.1	14.0	12.6			
知測口時(預納時間)	1997.7.27	2017.8.8	1996. 6. 28	1996.8.5	2015. 12. 1.			
宽侧口时 (死地时间)	12h	11h	13h	13h	11 h			
日積算値(kJ/m²)	5.55	5.90	7.09	6.63	8.88			
観測日	2013. 6. 13	2011. 7. 17	1996. 6. 28	2014.7.6	2020. 12. 18			
日積算値の月平均値	2 55	4.97	4 66	5.95	6 07			
(kJ/m^2)	5. 55	4.27	4.00	5.25	0.97			
観測月	2007.7	2020.8	2004.8	2014.7	1999.12			

表 3-1-2 これまでに観測された最大の紅斑紫外線量

※観測期間は、札幌及び那覇は1991~2017年、つくばは1990~2021年、鹿児島は1991~2005年3月、 南極昭和基地は1993~2021年である。

(出典) 気象庁提供

エアロゾルの影響

エアロゾルは大気中に浮遊する直径 0.001~100 µ m 程度の固体若しくは液体の微粒子のこ とで、大気汚染物質等を起源とする硫酸エアロゾル、海水が風で巻上がってできる海塩粒子、 化石燃料等の燃焼によるすす、黄砂などがある。エアロゾルは紫外線を散乱・吸収するため、 エアロゾル量が多いと地表に達する紫外線強度は減少する。

図 3-1-8 に、つくば市で快晴時に観測された UV インデックスの日変化と、大気中にエアロ ゾルが存在しないと仮定して、放射伝達モデルを用いて計算した UV インデックスの日変化を 示す。この日に観測された 9 時~15 時の UV インデックスは、エアロゾルがないとした場合 に比べ、17~20%小さくなることがわかる。この日は普段より比較的エアロゾルが多い日だっ たが、顕著な黄砂の時などもっとエアロゾル量が多い場合には、UV インデックスはさらに小 さくなる。なお、エアロゾルが UV インデックスに及ぼす影響は、地域や季節によって異なる。 さらに、エアロゾル量は日々大きく変動し、また、エアロゾルの種類も様々であるため、エア ロゾルが紫外線量に及ぼす影響の大きさは一定ではない。最近の研究ではエアロゾルによる吸 収の影響が着目されている。

図 3-1-8 エアロゾルの有無による紫外線量の違い

つくば(高層気象台)で2004年7月7日に観測された毎時のUVインデックス(太線)と、同日のエアロゾルが全くないと仮定した場合のUVインデックスの推定値(細線)。

(出典) 気象庁 オゾン層観測報告:2010

2. 太陽紫外線の観測の状況

2-1. 太陽紫外線の観測手法

太陽紫外線の観測手法

紫外線の測定方法には、物理測定法、化学測定法、生物測定法などがある。このうち、物理 測定法は、実時間測定が可能であり利便性が高い測定法である。

物理量を測定する検出器には、オゾン全量観測にも用いられるブリューワ分光光度計等があ る。ブリューワ分光光度計は、紫外線の波長毎の光度(スペクトル強度)を測定できるが、比 較的高価である。この他、一定の波長域をまとめて測定する帯域型の紫外線検出器として、UV-B領域、UV-A領域の紫外線検出器や、日焼け効果の作用スペクトルや DNAの吸収スペクト ルに近い波長感度特性を持つ生物効果量を測定する紫外照射計がある。

地上に到達する太陽光の中で波長 400nm 以下の紫外線はわずか数%であり、このうち UV-B 領域の紫外線はさらに微量であるため、高精度の測定を長期にわたって維持するのは相当難 しいとされる。

化学測定法、生物測定法は、それぞれ紫外線ばく露による化学反応、生物反応を利用したも ので、代表的なものとして前者ではポリスルフォン酸を使った紫外線検出器が、後者では宗像 らが開発した枯草菌を使った紫外線検出器があげられる。これら2つの方法は、実時間測定が できないといった短所はあるものの、非常に小型で安価であり、個人ばく露量測定等にも利用 されている。

また、間接的な方法として衛星による観測がある。衛星観測手法は、地上での測定が困難な 場所も含め、紫外線量の地理的な違いを評価する上で有用である。

2-2. 紫外線観測状況

気象庁による観測

気象庁では、1990年1月からつくばにおいて、また、1991年1月から札幌(2018年1月で 観測終了)、鹿児島(2005年3月で観測終了)、那覇(2018年1月で観測終了)において、ブリ ューワ分光光度計による波長別(290~325nm)紫外線観測を実施している。また、オゾン減 少の著しい南極域でも、昭和基地において1991年2月から観測を実施している。(1991~1994 年1月は試験観測)。

各地点の紅斑紫外線量日積算値を求め、太陽紫外線が天候(雲量)、オゾン全量、大気混濁度 等によりどのような変化を受けているのか年次的解析がなされている。

国立環境研究所等による観測

国立環境研究所では、北海道陸別町において、北域成層圏総合モニタリングの一環としてブ リューワ分光光度計による波長別(290~325nm)紫外線観測を1999年7月から2017年12 月まで実施した(「北域成層圏総合モニタリング」は、2018年3月で公開を終了)。ブリュー ワ分光光度計は2020年度に名古屋大学に譲渡され、その後は名古屋大学によって運用され観 測が実施されている。また、国立環境研究所地球環境研究センター(CGER)が中心となって、 全国の大学や研究機関等と連携し、帯域型紫外照射計(UV-A及びUV-Bのそれぞれの帯域で 測定)で連続観測を行う「有害紫外線モニタリングネットワーク」は、国内の16機関21サイ トが参加し2000年に発足した。2004年3月から、UVインデックス(速報値)をインターネ ットで公開しており、全国10箇所のデータを公開している(2022年8月時点)。

国際的な観測網

有害紫外線観測網の確立のため、WMO は全球大気監視(GAW:Global Atmospheric Watch) 計画に基づく地球規模の紫外日射観測網の運用を支援し、観測精度の維持・向上及び観測資料 の有効利用等を図ることを目的に、1989 年に紫外線に関する科学諮問部会(SAG:Scientific Advisory Group)を設置し、世界オゾン・紫外線資料センター(WOUDC)において紫外線デ ータの収集と提供を行っている。

3. 太陽紫外線の監視結果

3-1.世界の太陽紫外線の状況

(a) 紫外線量の経年変化

いくつかの大気の清浄な地域での観測によると、紫外線量は 1990 年代後半以降、オゾンの 増加に呼応して減少している。しかし、北半球中緯度のいくつかの観測点では、地表に到達す る紫外線は増加している。これらの増加はオゾンの減少だけでは説明できず、1990 年代初め からのエアロゾルの光学的厚さ及び大気汚染の減少に起因しているほか、雲の減少の影響も一 部考えられる。長期変動解析に利用可能な地上観測データは少ないため、紫外線の変化の地球 規模の傾向とその原因を現時点で確定することは困難である。

図 3-3-1 に世界各地の 11 観測点における月平均紅斑紫外線量(正午 1 時間)の経年変化を 示した。1990 年代始めから 2000 年代半ばまでにかけての直線回帰で、南半球及び北極の観測 局で紫外線の減少傾向が示されたが、オゾン減少の緩和後(1998 年以降)に限ってみると、こ れらの地域ではオゾンの増加に対応した紫外線の減少はより顕著である。一方、北半球中緯度 では紫外線は増加している。しかしながら、紫外線の変化には観測上の不確実性が含まれてお り、特に観測開始当初の不確実性は大きい。

図 3-3-1 世界各地における月平均紅斑紫外線量の長期変化 世界各地の 11 観測点における月平均紅斑紫外線量(正午 1 時間)の経年変化。直線は傾向を示す。 各図の右上の数値は統計的有意性を示す。★:99% ●:95% 無印:有意性なし (出典) Scientific Assessment of Ozone Depletion: 2006 (WMO, 2007)

令和3年度監視結果(太陽紫外線)

図 3-3-1 世界各地における月平均紅斑紫外線量の長期変化(続き)

世界各地の11 観測点における月平均紅斑紫外線量(正午1時間)の経年変化。直線は傾向を示す。
各図の右上の数値は統計的有意性を示す。★:99% ●:95% 無印:有意性なし
(出典) Scientific Assessment of Ozone Depletion: 2006 (WMO, 2007)

令和3年度監視結果(太陽紫外線)

図 3-3-2 にテッサロニキ(ギリシャ)における、UV-B と UV-A を代表する 2 つの波長 (307.5 nm 及び 350 nm)の紫外線の 2017 年末までの最新データによる分光放射照度偏差を 示す。

夏季(6~11月)においては、紫外線量は10年当たりUV-Bで5%、UV-Aで2.5%、増加 している。これは主にエアロゾル光学的厚さの減少によるものである。UV-Bの大幅な増加は この季節におけるオゾン全量の微減に加えて、エアロゾル光学的厚さの減少が大きく影響して いる。エアロゾル光学的厚さの減少の影響は、UV-Aよりも、UV-Bに対してより大きく現れて いる。2000年代中頃からの最近10年間では、エアロゾル光学的厚さが継続的に減少している にもかかわらず、UV-Aは増加していない。これは、おそらく、長波長の紫外線(UV-A)に対 しては、エアロゾルの影響が弱いことに起因していると思われる。オゾンの影響は紫外線の短 期的(年)変動に顕著に現れる。

他の研究では、テッサロニキの正午時・晴天下における UVI の日変動は、オゾン全量が極度 に高い日が数日あったにもかかわらず、オゾン全量よりもエアロゾルによってより大きな影響 を受けていたことが示されている。これらの結果は前述した他の地域の結果と一致している。

図 3-3-2 テッサロニキ(ギリシャ)におけるオゾン全量、紫外線量及びエアロゾル光学的厚さの 経年変化

晴天時で太陽天頂角が 64°の条件による、季節別の年偏差(オゾン全量、紫外線量は%、エア ロゾル光学的厚さは絶対値)。(a)(b)(c)は 307.5 nm 紫外線量 (UV-B)、(g)(h)(i)は 350 nm 紫外 線量 (UV-A)、(d)(e)(f)はオゾン全量、(j)(k)(l)はエアロゾル光学的厚さ(320 nm) を示す。12 ~5月(左)、6~11月(中)、年間(右)

(出典) UNEP. 2018. Environmental effects and Interactions of Stratospheric Ozone Depletion, UV Radiation, and Climate Change: 2018 assessment Report.

令和3年度監視結果(太陽紫外線)

一方、前々回報告(UNEP-EEAP,2003)でオゾン全量の減少に対応した紫外線の増加が示さ れた南半球の測定点(ローダー(ニュージーランド))についてみると、1999~2006年にかけ てオゾン全量の増加に呼応してUVインデックスの減少が見られる(図3-3-3)。しかしながら、 その減少幅は、同地域でのオゾン全量の増加をもとに見積もったUVインデックスの減少量を 上回るもので、大気中のエアロゾルによる紫外線量の減衰効果が強まった可能性がある。

その他、帯域型紫外線計による観測で、1990~2000年における UV-B の増加(平塚)、1970 年代後半から 1990年代後半にかけての紫外線の増加(モスクワ(ロシア))、1983~2003年に かけての紅斑紫外線量の増加(ノーショーピング(スウェーデン))などが報告されている。こ れら紫外線量の増加は、オゾン全量の減少、雲の光学的厚さの減少、エアロゾルの減少等に起 因する大気透過度の増加によるものである。

一方、衛星観測による地球規模の紫外線トレンド評価に関しては、1999 年の WMO の報告 以降、技術的な問題から新しい報告は行われておらず、今後の課題となっている。

UV インデックスの長期変化

シンボルは12月、1月、2月の紫外分光光度計による測定結果に基づく、平均オゾン量(黒)と正午の最大 UVインデックス(最大5日間の平均)(灰色)を示す。実線は、衛星観測によるオゾン量に基づく夏季の平均 オゾン量とオゾン量から求められたUVインデックスを示す。

(出典) Scientific Assessment of Ozone Depletion: 2006 (WMO, 2007)

(b) 過去の紫外線データの再構築(モデルによる再現実験)

紫外線による生物又は健康への影響が長期間のばく露に関係することから、過去の紫外線量 の変化を知ることは重要である。しかしながら、信頼できる紫外線観測データは 1980 年代後 半以降に限られる。そのため、過去の紫外線トレンドを再現する様々な方法が提案されてきた。 観測されたデータの地球物理学的パラメータ(オゾン全量、全天日射量、冠雪等)による統計 的推測の他、放射伝達モデルに雲などの影響を組み合わせたハイブリッド法をはじめ様々なモ デルによる解析が行われている

図 3-3-4 に最も長期間のモデル計算例(スイス)を示す。1926~2003 年までの間、明瞭な 経年変動とともに、1940 年代半ば、1960 年代前半及び 1990 年代にそれぞれ高い紫外線量が 示されている。モデルによると、1980 年代以前の紫外線の変動は雲量の変動に伴う日射時間 の変動によることが、一方、1990 年代の増加はオゾン全量の変動によることが示されている。 このほかにも、各地でモデルによる再現実験が多数行われている。再現実験から得られた紫外 線量の変動は、1990 年代及び 2000 年代の観測結果の変動と比較的一致している。

紫外線量の短期的な変動については、それぞれの地域による地球物理学的な要因による攪乱 を受けるが、全体としては地球規模の変動、例えばヨーロッパにおける 1970 年代半ばの大気 プロセスの変化及び北半球中緯度地域における 1990 年代のオゾン減少の影響が確認されてい る。紫外線量は、20 年間(1980~2000 年)の増加傾向及びそれ以前の周期的な変化で特徴付 けられる。過去の変動の多くは雲量によって、また一部エアロゾルによって説明される。オゾ ン変動は、1980 年代及び 90 年代に限って、紫外線量の増加に寄与している。

図 3-3-4 1940~1969 年の平均値紫外線量からの偏差(スイス) 上の図は 1940~1969 年の平均値紫外線量からの偏差を示し、下の図は紫外線量の変化に影響を与える割合が 示されている。 (出典) Scientific Assessment of Ozone Depletion: 2006 (WMO, 2007)

3-2. 南極域の太陽紫外線の状況

(a) 2021 年の南極域における紫外線の状況

南極昭和基地における紅斑紫外線量日積算値の月平均値は、1、3、4、11、12月に多く、特に4月は1993年の観測開始からその月として2番に大きい値、3月はその月として3番目に多い値となった(図3-3-5)

南極オゾンホールが存在する期間の南極昭和基地における紅斑紫外線量日積算値の推移を、 全天日射量日積算値及びオゾン全量の推移とともに図 3-3-6 に示す。

紅斑紫外線量日積算値は11月以降、平均値よりかなり大きく推移して、1月以降は並みとなった。これらは、概ねオゾン全量の推移と対応した逆相関を示しており、紅斑紫外線量日積算値がオゾン全量に強く依存していることを示している。

全天日射量日積算値の平均値(1994~2008年)は、極夜の明けた後の8~12月にかけて 増加し、12月に最大となっている。これは、南中時の太陽高度が高くなり、日照時間が長く なるためである。基本的には、紅斑紫外線量日積算値の平均値も全天日射量の季節変化に対 応して変化するが、紅斑紫外線量の平均値のピークは全天日射量が最大になるより半月ほど 前の11月下旬に見られる。これは、例年この時期が南極オゾンホールの解消期にあたり、オ ゾン全量(破線)が増加し、紫外線の吸収が日に日に強まるためである。

図 3-3-5 南極昭和基地における紅斑紫外線量日積算値の月平均値

南極昭和基地における紅斑紫外線量日積算値の月平均値の推移。 ●は月平均値。実線は、月別平均値(1994~2008年)であり、縦線はその標準偏差である。 極夜前後(5~7月)は月別平均値(1994~2008年)を算出していない。

(出典) 気象庁提供

図 3-3-6 南極昭和基地における紅斑紫外線量日積算値、オゾン全量、全天日射量日積算値の推移 実線は、紅斑紫外線量(CIE)日積算値、オゾン全量、全天日射量の観測値を示す。破線は、それぞれの日別値を 1994~2008 年で平均した後、15 日移動平均をして求めた値を示す。 (出典)気象庁提供

(b) 南極域紫外線の経年変化

図 3-3-7 に南極昭和基地で紅斑紫外線量が多い時期である 10~1 月の 4 か月平均紅斑紫外 線量日積算値の 1993~2021 年までの推移を示す。この時期の紅斑紫外線量日積算値は、南 極オゾンホールの規模や消滅時期に大きく左右されているため、大きく変動しているが、長 期変化として、統計的に有意な増減はみられない。なお、紅斑紫外線量に明瞭な長期変化が 認められないことは、南極昭和基地における 1993~2021 年の 10~12 月のオゾン全量に長期 トレンドが見られない (p.32 図 1-3-16 参照) ことと対応している。

10~1月平均紅斑紫外線量日積算值の経年変化

南極昭和基地において紅斑紫外線量の多い時期である10~1月の4か月平均した紅斑紫外線量日積算値。1998年は、観測測器の障害のため欠測。

(出典) 気象庁提供

3-3. 我が国の太陽紫外線の状況

(a) 2021年の国内の月別紫外線の状況

気象庁で観測している紅斑紫外線量日積算値の2021年における月平均値を図3-3-8に示す。 2021年の状況について、平均値(1994~2008年)からの差が平均値算出期間の標準偏差以内 のときを「並」、それより大きいときを「多い」、それより小さいときを「少ない」と表す。

2021年のつくばにおける紅斑紫外線量日積算値は、2、3、4、6、10、11月に多く、特に2、 3、4月は1990年の観測開始からその月として1番多い値となった。また、11月はその月と して2番目に多い値、10月はその月として3番目に多い値となった。これらは、日照時間が 例年より多かったことやオゾン全量が例年より少なかったことが要因と考えられる。

●「多い」、●「並」、●「少ない」

図 3-3-8 2021 年における紅斑紫外線量日積算値の月平均値

丸印は 2021 年の月平均値。実線は月別平均値 (1994~2008 年) であり、縦線はその標準偏差である。 (出典)気象庁提供

(b) 国内紫外線量の経年変化

観測結果に基づく紫外線量の傾向

国内で気象庁が観測を行っている 1990 年以降の紫外線量の長期変化をみるために、図 3-3-9 に紅斑紫外線(CIE)量年積算値の経年変化を示す(札幌と那覇については、2018 年 1 月を もって観測を終了したため、2017 年までのデータを掲載)。

近年、地表に到達する紫外線量は、国内3地点全て、観測を開始した1990年代初めに比べ 多くなっている。札幌とつくばでは1990年代初めから統計的に有意に増加しており、10年あ たり増加率は札幌で3.3%(年1.81kJ/m²)、つくばで4.1%(年2.92kJ/m²)である。那覇で は、統計的に有意な増加傾向はみられない。

地表に到達する紫外線量は上空のオゾン量、エアロゾル量、雲の状況などによって変化する。 1990年以降のオゾン量は、1990年代初めに最も少なく、その後はほとんど変化がないか、緩 やかに増加している(詳細は図 1-3-22 (p.40)を参照)。このため、1990年以降、国内 3 地 点の紫外線観測にみられる紫外線量の増加傾向をそのまま上空のオゾン全量の変化に関連づ けることはできない。

日本国内では全天日射量は増加傾向にあることが複数の研究者らによって報告されている (池鯉鮒, 2012、Kudo et al., 2012)。図 3-3-10 として気象庁によるつくばの全天日射量の 1990 年から 2021 年の観測結果を示す。全天日射量が増加してオゾン全量が変化しない場合は、必 然的に UV-B 量は増加する。

全天日射量の増加傾向の原因として 1970 年代から 2000 年代にかけてエアロゾルの光学的 な厚さは 0.02 減少し、吸収性エアロゾル量の指標である単一散乱アルベドは 0.21 増加したこ とが挙げられている (Kudo et al., 2012)。これらの変化はエアロゾル量が減少し、特に吸収性 のエアロゾルの割合が少なくなったことを意味する。

日本国内では大気環境の監視の一環として化石燃料などの燃焼によって主に発生されるエアロゾルの一種である浮遊粒子状物質(SPM: Suspended Particulate Matter)が1970年代後半から日本各地で測定されている。1990年度から2018年度にかけて測定されたSPM濃度の全国平均値を図3-3-11に示す。

SPM 濃度の 2018 年度の全国平均値は、道路を走行する自動車から排出される大気汚染物質の測定を目的としている自排局は 1990 年度の 1/3 以下に、自動車の影響を受けない一般局は 1990 年度の 1/2 以下に低下しており、少なくとも地表付近のエアロゾル量は減少していることが示されている。

なお、紫外線量の長期的な増加傾向には、エアロゾル以外に天候も寄与している可能性があ るが、紫外線量の増加に対してそれぞれどの程度寄与があるのか定量的には明らかではない。

「オゾン層破壊の環境影響アセスメント:2018」(UNEP,2018)によれば、モントリオー ル議定書の成功の結果、オゾン層破壊が軽減され、多くの地域における1990年代半ば以降の 紫外線の変化は、オゾンよりも他の要因の影響が大きくなっている。さらに北半球中緯度のい くつかの地点では、雲量とエアロゾルの減少により紫外線が増加していることが報告されてい る。国内のオゾン全量は1990年代半ば以降緩やかに増加していることから、国内の紅斑紫外 線量の増加も、雲量とエアロゾルの減少が原因として考えられる。

166

図 3-3-9 紅斑紫外線量年積算値の経年変化

札幌、つくば、那覇における紅斑紫外線量年積算値の観測開始から 2021 年まで(札幌、那覇は 2017 年まで) の経年変化。年積算値は欠測を考慮し、紅斑紫外線量日積算値の月平均値に各月の日数をかけた値を 12 か月 積算して算出している。統計的に有意(信頼度水準 95%)に増加している札幌、つくばについて全期間の長期 的な傾向を直線で示し、紅斑紫外線量の年積算値の増加率を図中に示した。札幌と那覇の紫外線観測は 2018 年1月に終了した。(出典)気象庁提供

図 3-3-10 つくばにおける全天日射量の経年変化

(出典)気象庁ホームページ「過去の気象データ検索」のデータをもとに東海大学 竹下秀氏作成

図 3-3-11 全国平均浮遊粒子状物質の経年変化

「自排局」は自動車排出ガス測定局、「一般局」とは一般環境大気測定局のこと。一般環境大気測定局は、大気汚染防止法第22条に基づいて、環境大気の汚染状況を常時監視(24時間測定)する測定局で、自動車排出ガス測定局は、大気汚染防止法第20条及び第22条に基づいて、自動車排出ガスによる環境大気の汚染状況を常時監視(24時間測定)する測定局である。

(出典)国立環境研究所 大気汚染常時監視データをもとに東海大学 竹下秀氏作成

4. 太陽紫外線の将来予測

紫外線量の予測

UNEP の環境影響評価パネル(EEAP)の2010年報告書では、1980年(オゾンホール が顕著に現れ始めた年)を基準とした緯度帯ごとの紅斑紫外線量の予測結果を示している (図 3・4・1)。これは、晴天時の正午における紅斑紫外線量年平均値の緯度帯ごとの平均の 予測であり、これによると、北半球中高緯度では2020年代までに1980年のレベルに戻る と予測された。その後遅れて、南半球で紫外線量が1980年レベルに戻ると見込まれるが、 南半球高緯度では1980年レベルに戻るのがさらに遅れる予測となっている。1980年レベ ルへ戻った後は、低緯度域を除き、紅斑紫外線量は減少する傾向が予測されている。

なお、紅斑紫外線量が 1980 年レベルへ戻る時期にはモデルによって評価が異なること、 雲量、エアロゾル及び気候変化等の効果は考慮されていないことに注意が必要である。

図 3-3-8 に示されているとおり、北半球に位置する日本国内の 3 地点の観測値については 2000 年以降紅斑紫外線量の減少傾向は見られず、オゾン量以外の効果も影響していると考 えられる。

図 3-4-1 紅斑紫外線量の予測

1960~2100 年までの紅斑紫外線量を緯度帯(北緯 60°~90°、北緯 30°~60°、南緯 30°~北緯 30°、 南緯 30°~60°及び南緯 60°~90°)ごとに平均し、5 年移動平均で示したもの。紅斑紫外線量は晴天時 の正午の値を年平均したものを利用。1980 年の値を基準とし、変化の割合(%)を示している。 (出典) Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2010

Assessment (UNEP-EEAP, 2011)

		January	Aplil	July	October
		Avg ± SD	Avg ± SD	Avg ± SD	Avg ± SD
	Ozone		-8 ± 1	-6 ± 0	-3 ± 0
N Polor	Reflectivity		-3 ± 5	-8 ± 3	-7 ± 6
N.F UIAI	Aerosol	POLAR NIGHT	2 ± 0	-1 ± 1	0 ± 1
>00	Clouds		0 ± 0	-2 ± 2	-3 ± 5
	UVI		-9 ± 6	-14 ± 3	-14 ± 11
	Ozone	-3 ± 1	-7 ± 1	-5 ± 1	-4 ± 1
N High	Reflectivity	-2 ± 3	-3 ± 3	-1 ± 2	-3 ± 3
	Aerosol	2 ± 2	2 ± 2	1 ± 1	2 ± 2
00 10-00 10	Clouds	-1 ± 3	0 ± 1	0 ± 2	-1 ± 4
	UVI	-6 ± 8	-8 ± 5	-5 ± 4	-7 ± 5
	Ozone	-4 ± 1	-5 ± 2	-3 ± 1	-2 ± 1
NMid	Reflectivity	-1 ± 2	0 ± 1	0 ± 0	0 ± 0
	Aerosol	4 ± 4	5 ± 4	5 ± 5	5 ± 5
30 N-00 N	Clouds	0 ± 2	0 ± 1	1 ± 2	0 ± 2
	UVI	0 ± 7	-1 ± 6	5 ± 8	5 ± 7
	Ozone	-1 ± 1	0 ± 1	-1 ± 1	-1 ± 1
Tropics	Reflectivity	0 ± 0	0 ± 0	0 ± 0	0 ± 0
30°S-30°N	Aerosol	1 ± 2	1 ± 2	1 ± 2	1 ± 3
30 3-30 N	Clouds	0 ± 2	0 ± 2	0 ± 2	0 ± 2
	UVI	0 ± 4	1 ± 3	1 ± 3	2 ± 4
	Ozone	-5 ± 2	-4 ± 1	-5 ± 1	-6 ± 3
S Mid	Reflectivity	0 ± 0	0 ± 0	0 ± 0	0 ± 0
30°5-60°5	Aerosol	0 ± 0	0 ± 0	0 ± 0	0 ± 0
30 0-00 0	Clouds	0 ± 1	-1 ± 2	-1 ± 2	0 ± 1
	UVI	-7 ± 3	-6 ± 3	-7 ± 4	-9 ± 5
	Ozone	-8 ± 1	-6 ± 1	-6 ± 0	-23 ± 8
S High	Reflectivity	-1 ± 1	-1 ± 1	-2 ± 3	-2 ± 3
60°5-80°5	Aerosol	0 ± 0	0 ± 0	0 ± 0	0 ± 0
00 0-00 0	Clouds	-1 ± 2	-1 ± 3	-3 ± 3	-1 ± 2
	UVI	-14 ± 2	-10 ± 4	-17 ± 7	-33 ± 8
	Ozone	-10 ± 0	POLAR NIGHT		-35 ± 1
S Polar	Reflectivity	0 ± 0			0 ± 0
~80°S	Aerosol	0 ± 0			0 ± 0
-000	Clouds	0 ± 0			0 ± 1
	UVI	-13 ± 1			-44 ± 1

表 3-4-1 各緯度帯別の UV インデックスの将来予測

(出典) EEAP2018、Table1 (p54) を改変

上表に各緯度帯別の UV インデックスの将来予測(2010-2020 年から 2085-2095 年)を 示した。オゾン全量に加えて、地表面反射率、エアロゾル、雲量の変化をモデルに加えてい るため、特に北半球中緯度ではエアロゾルの影響で7月、10月には UV インデックスが増 加すると予想されている。

参考資料

参考資料1. 紫外線による人の健康への影響

(1)紫外線の皮膚への影響

太陽紫外線は皮膚細胞内外の多種の物質に吸収され生物反応を惹起する。特に UV-B は細胞 遺伝子 DNA にシクロブタン型 2 量体(cyclobutane pyrimijine dimer:CPD)を生成すること で独特の傷を与え、遺伝子変異を誘発する。

夏の正午ごろに太陽紫外線を 20~30 分も浴びると、数時間後から皮膚が赤くなり始める。 サンバーンの始まりである。赤くなるのは皮膚血流量の増加によるものだが、その引き金は、 主に UV-B による表皮角化細胞の遺伝子に生じた傷である。傷は速やかに修復されるが、残存 すると血管を拡張させる物質 (プロスタグランディンや一酸化窒素)を生成し、血流を増やす。 皮膚が黒くなるサンタンもまた、少なくとも一部は遺伝子の傷が引き金となっている。また、 一度では皮膚が赤くならない少量の紫外線(夏の正午ごろの太陽光線を約 10 分)を毎日続け て浴びると、1 週間後には皮膚は日焼けでうっすらと赤くなる。その表皮角化細胞を調べると、 遺伝子にたくさんの傷が蓄積していることが確認されている。さらに近年、サンバーンの原因 として、RNA が UV-B を吸収して生じる miRNA が自然免疫に関連する受容体(toll-like receptor)を介して、さらに、表皮角化細胞質のアミノ酸であるトリプトファンが UV-B を吸 収して生じる物質が arylhydrocarbon 受容体 (AhR)を介して、また、AhR の構成成分の一 つである pp60^{src}が細胞膜受容体 EGFR を介して遺伝子発現を変え、炎症を惹起することが明 らかにされている。

長年太陽紫外線を浴びる結果、20歳を過ぎるとアジア人では、慢性障害として光老化と呼ばれる皮膚症状が出始める。一方、波長の長い UV-A は UV-B に比較し CPD 生成は千分の一程度であるが、皮膚の免疫抑制や光老化の原因となる。また、UV-B と UV-A は細胞膜にも作用し、細胞の働きを変える。

(2)太陽紫外線を長年浴びて現れる光老化と皮膚腫瘍

光老化(ひかりろうか)とは、小児期から長年太陽光線を浴びた皮膚に見られるシミ(小さな色素班で日光黒子と呼ぶ)やシワなどの皮膚の老化症状である。日光を浴びない皮膚の老化 に比べると、光老化は若い年齢で現れ、約80%は太陽紫外線が原因と考えられている。日光を浴びない皮膚の老化に比べ、真皮上層には、光老化特有の変性した弾性線維が蓄積されており、 日光性弾力線維変性症と呼ばれている。シミは主にUV-Bで生じるが、シワはUV-BとUV-A が原因で発症する。日本人の場合、日焼けにより表皮にメラニンが生成され小麦色になるため、 遮光効果が高まり、その後のUV-Bによる遺伝子の傷CPD生成が少ないので皮膚がんになり 難いと考えられている。更に平均寿命が短かったこともあり、わが国では、1970年中ごろまで は、紫外線の皮膚への健康障害については、一般にはほとんど注意は払われていなかった。し かし、1980年代に入りフロンガスによるオゾン層破壊がきっかけとなり、わが国でも紫外線

171

と呼ばれる前がん症が急速に増えてきた。

1980年代になると、南半球のオーストラリアでは、教育の場で子どもに太陽紫外線の有害性を教え、紫外線から皮膚を守る方法を教え始めた。わが国でも1980年代中ごろを過ぎると、子供の紫外線対策にも注意が注がれ、1998年には母子健康手帳から「日光浴」の項目が削除された。時期を同じくして、紫外線の慢性ばく露による障害、光老化は防ぐことができる皮膚の 老化症状であるとの立場から、わが国の皮膚科医師の間でも基礎・臨床研究が盛んになり始め、 シミやしわの治療が全国で広く行われるようになり今日に至っている。

光老化症状でもシミが一番早く症状として表れる。早い人では 20 歳過ぎから顔や肩から背 中にかけて、強い日焼けを繰り返した皮膚にシミが出始める。しわは 30 歳ころから出始め、 皮膚の良性腫瘍(脂漏性角化症:顔など日光ばく露皮膚にできるいぼのようなざらざらした米 粒ほどの小さな、薄い褐色の皮疹)が 40 歳ころから出始める。光老化症状は小児期から上手 に紫外線と付き合えば発症を 60 歳から 80 歳頃まで遅くできる。高齢国家のわが国では、子ど もの紫外線対策をいっそう広める時期に来ていると皮膚科の専門家は考えている。

(3)太陽紫外線による DNA 損傷と"A"のルール

遺伝子 DNA (deoxyribonucleic acid: DNA) は、糖とリン酸で作られた 2 本の鎖の間に、丁 度電車の線路の枕木のように、アデニン(adenine:A)とチミン(thymine:T)、グアニン (guanine:G)とシトシン(cytosine:C)が手を結んで、線路を結び付けている。つまり2本の線 路は A-T と G-C の 2 種類の手のつなぎ方で作られている。細胞が分裂するときには、枕木は すべて外され、2本の線路となる。1本の線路上の塩基がAなら、体側にTが、また、Cなら ば体側に G が手をつなぎ、分裂前と同じ遺伝子配列の細胞が生まれる(図 3-資-1)。UV-C と UV-B は1本の線路上に並ぶ C-C や C-T に効率よく吸収され、対側の鎖との手を切って、隣 同士で手をつなぎ C=C と C=T となる。これが紫外線による独特の傷で、シクロブタン型2量 体(cyclobutane pyrimidine dimer: CPD)と呼ばれている。皮膚細胞は、24 時間でこの傷の 約半数を元通りに修復する仕組みを持っている。しかし、傷の数が多いと一部の傷を残した状 態で、細胞分裂の準備をしなくてはならない。たとえば、C=C の傷を残して DNA 合成を始め ると、C=Cの対側に誤った塩基が挿入される可能性が 50%もある。これが、Aのルールと呼 ばれ、紫外線を浴び続ける表皮細胞の遺伝子に突然変異が生じる仕組みと考えられている。ど の遺伝子に変異が生じるかで、慢性障害としての光老化(シミ)は 20 歳過ぎから、また、皮膚腫 瘍(良性、前がん症、悪性)が40歳ころから発生する。高齢社会日本では、高齢者の若さと健康 を維持するためには、小児期からの紫外線防御が極めて重要と考えられる。

172

図 3-資-1 "A"のルール

(4)紫外線による免疫抑制のメカニズム

皮膚は最外層にあり、外来物質や感染生物の侵入を阻止する重要な働きを持っている。紫外 線が皮膚の免疫反応を抑制することが発見されてから 30 年以上が過ぎ、近年その生物作用に ついての新しい解釈が生まれている。

紫外線による免疫抑制が発見された当初は、腫瘍発症をターゲットにした免疫抑制機構が研究された。紫外線で生じたマウスの皮膚がんを同系統のマウス皮膚に移植すると免疫反応により腫瘍が拒絶されるが、移植の数日前に紫外線を照射した皮膚に移植すると腫瘍が成長する現象が報告された。その後、皮膚に塗布される化学物質に対するアレルギー反応も UV-B の前照射で抑制されることが明らかにされた。

これらの抑制反応は、紫外線を浴びたのち 10 日間以内の移植や皮膚塗布で起きたが、それ 以降では抑制は起きなかった。つまり、紫外線を浴びて 10 日を過ぎると免疫抑制効果は消失 していた。さらに紫外線量が少量の場合には、紫外線を浴びた皮膚に限局した抑制反応を示し、 大量では紫外線を浴びていない皮膚でも抑制反応が観察された。この抑制機構には、表皮にお いて免疫反応を担うランゲルハンス細胞の機能が障害され、免疫反応を抑制するように働くサ プレッサーT細胞が誘導されるためと説明されてきた。また、この反応の引き金は、細胞遺伝 子 DNA の傷、あるいは表皮に存在し免疫反応を抑制する働きを持つウロカニン酸によるもの と考えられ、表皮細胞の 90%以上を占める角化細胞から生成放出されるサイトカイン(細胞が 作り出す物質で、作った細胞自身の他、多くは周りの細胞に働きかけてその働きを変える)の 一つである免疫反応を抑制する作用を持った IL-10 (インターロイキン-10)がリンパ球に働き、 免疫抑制反応を誘導すると説明されてきた。 その後研究が進み、現在では、角化細胞が発現するサイトカインの一種である RANKL (receptor activator of NFkB ligand) が炎症反応時には増加し(UV-B 照射時にも増加する)、 骨髄由来のランゲルハンス細胞の受容体 RANK(RANKL が結合するアンテナのようなもの) を介してランゲルハンス細胞を刺激し、免疫反応を抑制する働きを持つIL-10を生成放出させ、 免疫反応を抑え込むリンパ球である抑制性 T 細胞(T-reg)が増加し免疫抑制が起きると理解 されている。

(5)紫外線による免疫抑制効果

紫外線の免疫抑制効果で人の健康に与える影響として最も重要なのは感染症への影響であ る。現在までに、細菌、真菌やウィルスの感染に対する紫外線の抑制効果が、小動物を用いて 広く研究され、紫外線で感染症は重症化し早期に死亡することが確認されている。しかしなが ら、人を対象とした感染症を誘発させる研究は倫理的にできないため、疫学的研究が主となっ てきた。その一つは、ヘルペスウィルスによる単純疱疹の再発が紫外線ばく露後に好発するこ と、また、乳頭腫ウィルスによる皮膚がんの発症も紫外線ばく露部位に好発することなどであ る。また、ワクチンの予防接種を施行する季節が抗体産生に与える影響の解析から、紫外線ば く露により接触皮膚炎と自然免疫の主要因子である NK 細胞の活性は抑制されるが、B 型肝炎 ウィルスに対する抗体価には影響しなかったと報告されている。

紫外線による免疫抑制は皮膚の過剰な免疫反応であるアレルギー反応を抑制することから、 現在では本来人には必要な機構ではないかと考えられるようになってきている。紫外線で誘導 される抑制性 T 細胞(T-reg)は、体の免疫機構が自分の細胞や組織を攻撃する結果生じる自 己免疫反応の発症を抑制する働きがあることから、紫外線による皮膚の免疫抑制は皮膚を介し て常時起きる可能性がある物質に対する過剰反応を避けるために必要な機序とも考えられる。

また、紫外線による免疫抑制は、健康な人では何らの変化も生じない太陽光線で、皮膚に異常な反応が起きる病気である光線過敏症に罹患しないための仕組みの可能性がある。日光に当たる皮膚にかゆみのある皮疹が出る多型日光疹患者の場合は、6MED(皮膚がうっすらと赤くなる最少紅斑量の6倍のUV-B量)の大量の紫外線を浴びると、表皮で免疫反応を担う表皮ランゲルハンス細胞が減少しにくくなる特性に加え、真皮の多核白血球(RANKLを発現)の浸潤が少なくなることで、免疫反応を抑制するサイトカインIL-10の発現が不活発となり、アレルギー反応が起きやすいと考えられている。

(6)皮膚タイプによる紫外線による影響の違い

色白で赤くなりやすいタイプの人は色黒で赤くなりにくいタイプの人に比べ、同量の紫外線 で2倍ほども免疫抑制を受けやすい。UV-Bによる遺伝子の傷も赤くなりやすい人はなりにく い人に比べ3倍ほど多い。これらの結果は紫外線で赤くなりやすい人は赤くなりにくい人に比 べ、紫外線による皮膚がんに罹患しやすいことを示唆している。

(7)紫外線による人体への悪影響と好影響

紫外線による人の健康への悪影響としては、急性的な影響(日焼け、免疫抑制、角膜炎など) と慢性的な影響(光老化、皮膚がん、白内障など)が指摘されている。一方で、日光を浴びる ことで体内でビタミン D が合成される。図 3-資-2 には、①悪影響(浴びすぎ)の例として日焼け(紅斑作用)と紫外線の関係と、②不十分な場合の例としてビタミン D 合成阻害と紫外線の関係を1つの図に示した。

図 3-資-2 UV インデックスと紫外線による影響の例(白人種)

肌の色により皮膚への障害及びビタミン D 合成に必要な時間は異なる。図に示した曲線は白人種 (1MED (皮 膚がうっすらと赤くなる最少紅斑量) =25mJcm⁻²) についてのものであり、日本人を対象とした研究ではな いことに留意が必要である。なお、日本人の場合は、白人種に比べて一般に紫外線に対する感受性が低い。時 間は悪影響の出る時間と全身または身体の一部をばく露した時にビタミン D 合成に必要な時間を示す。 (出典) Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2010 Assessment (UNEP-EEAP, 2011)

ビタミン D は、小腸内でのカルシウムとリンの吸収を促進する生理作用や、カルシウムとリンから骨を形成する(化骨)作用を有する。ビタミン D が極度に欠乏すると、発育期ではクル病や手足の骨の湾曲などに、成人では骨軟化症につながると考えられている。現在わが国で問題となっているのは、妊婦や新生児の母親のビタミン D 不足であり、このような母親の母乳で育つと、小児の骨形成に異常が生じることである。

UV-B を浴びた皮膚では、活性型ビタミン D3 が生成されるので、適度に日光を浴びていれ ばビタミンD が欠乏することはない。日本では夏の快晴日の正午頃であれば、顔、前腕、手背 にわずか数分太陽光線を浴びれば、1 日に必要なビタミン D3 が合成される計算である。しか し、知識として重要な点は、UV-B を長時間浴びてもビタミン D は一定量以上には、生成され ない点である。たとえば、真夏の正午ごろ、30 分以上太陽光線を浴びても、ビタミン D の前 駆物質の 7-デハイドロコレステロールが、熱反応でルミステロールなどビタミン D とは関係 のない物質に転換されるため、ビタミン D が作り続けられることはなく、一方では、皮膚細胞 には有害な損傷が大量に生じ、皮膚にとってはマイナスとなる。人間の体の仕組みは素晴らし い。ビタミン D は脂溶性で、体内での過剰や合成体外から取り過ぎると、体の脂肪組織にたま り、全身的な有害作用を引き起こす。そのため、過剰には作らない仕組みを持っていると考え られる。なお、図 3-資・2 には、全身に紫外線を浴びた場合のビタミン D 合成に必要な時間を 示したが、極端に紫外線ばく露量が少ないとビタミン D 合成が阻害される。

一方、図 3-資-2 に示すように、紫外線を浴び過ぎると日焼け(紅斑)を引き起こすことが示 されている。

175

皮膚への障害及びビタミン D 合成に必要な時間は紫外線の強さ(図 3-資-2 の UV インデッ クス)に反比例する(ビタミン D 合成に関しては紫外線を浴びる皮膚の面積も関係する)ほ か、肌の色(スキンタイプ)に依存し、紫外線に対して感受性の高い人では悪影響のあるレベ ルに達する時間は短くなる。図に示した曲線は白人種についてのものであり、色の濃い皮膚で は5倍以上長くなるとされている(UNEP-EEAP, 2011)。

また、紫外線ばく露による健康影響に関しては、ばく露時期も強く関係し、成人期以降の暴露と比較して幼少期の暴露が特に健康に有害であることが指摘されている。

(8)UV-A の有害性

1)免疫抑制等に対する UV-A の影響

これまでオゾン層の減少が人の健康や地球の生態系に与える影響が盛んに研究されてきた。 太陽紫外線を浴びて数時間から数日後に起きる日焼けなどの皮膚の急性反応が注目され、基礎 研究が進んだ。紫外線による免疫抑制反応もその一つであるが、UV-B が免疫抑制の主役であ り UV-A による免疫抑制に関しては、UV-A は UV-B による免疫抑制を阻止するとの報告もあ り、研究者の間でも意見が分かれていた。しかし、近年 UV-A が、活性酸素を介した細胞障害 だけではなく、直接遺伝子に働き UV-B と同様の傷を遺伝子の DNA に誘発し、皮膚発がんや シミの発症にも深く絡んでいる可能性が強く示唆され、さらに免疫抑制にも強く関わることが 明らかになってきた。

さらに、UV-A は UV-B に比べ、地表に届く量は 40~60 倍も多く、冬でも夏の半分の量は 届いているし、皮膚の真皮の上層に 20%も到達する。窓ガラスを透過して入ってくるのも UV-A である。太陽光線の免疫抑制効果を地表に届く紫外線量を考慮し評価すると我々の皮膚の免 疫抑制には UV-A が UV-B よりも強く関与していることを示す研究成果が最近報告されてい る。光老化のしわは UV-A が直接真皮の線維芽細胞に働き、UV-B は表皮の角化細胞に働きか ける結果と云われている。これら両紫外線の光老化作用は紫外線で生じる活性酸素が重要な働 きをしているためと理解されている。すでに赤外線が活性酸素を介してしわの原因となる可能 性も認められており、今後は太陽光線対策として活性酸素をいかに制御するかが研究のターゲ ットの一つである。UV-A の健康への悪い面がはっきりと科学的に証明されてきた今日、国民 にとって UV-A 対策は皮膚がんの発症予防だけではなく、光老化や免疫の側面からも重要と考 えられる。

2)細胞周期に対する UV-A の有害性

UV-Aは、UV-Bに比べ、DNAに傷をつける強さは約1000分の1と弱いが、地表に届く量 は遥かに多い。加えて、最近、UV-Aを浴びた細胞では、遺伝子に傷があっても分裂のための サイクルは止まらないので、傷を治す時間が短く、遺伝子に変異が生じる機会が増えるといわ れている。つまり、皮膚がんになりやすいと考えられる。これらの結果から、UV-A対策は健 康維持や、老化・疾病予防にとって重要と考えられる。

3) UV-A の糖化作用

現在、老化に関連する物質として最終糖化産物(advanced glycation end products:AGEs) が注目されている。AGEs は酵素の働きを必要としない反応で、糖(グルコース、フルクトー スなど)がたんぱく質、脂質や DNA と結合する。その結果、代謝の遅い皮膚真皮のコラーゲンや弾性線維の構造と機能に変化を誘発し、弾力性が低下する結果皮膚のしわやたるみの原因になると考えられている。

4) UV-A による光老化

長年にわたり太陽紫外線に暴露された顔面などの皮膚真皮には、光老化と呼ばれる特徴的変化(表皮は厚く真皮の弾力性が消失し、光線性弾性線維変性)がみられる。その真皮内の弾性線維には、AGEであるカルボキシメチールリジン(carboxymethyllysine:CML)が大量に沈着している。さらに、CML化された弾性線維は、UV-Aにより生じるエラフィン(elafin)のため代謝による除去が一層困難となり、長年にわたり沈着量が増加すると考えられている。また、UV-Aにより生じる活性酸素がCML生成をさらに高める。

UV-A は年間を通して大量に地表に届いている。また、UV-A は窓ガラスを透過するため、 室内でも窓際にいると浴びることになり、しわの原因になるので注意が必要である。日焼けの 原因となる UV-B 対策だけでなく、光老化を避けるには UV-A 対策が重要であることが理解で きる。

5) UV-A とメラノーマ

皮膚がんの多くは紫外線誘発の遺伝子変異で発症する。特に UV-B は遺伝子を構成する塩基 に直接吸収されシクロブタン型の 2 量体(CPD:cyclobutane pyrimidine dimer)を生成する。 CPD が誤って修復されると遺伝子変異を起こす。UV-A は、直接遺伝子 DNA に吸収される性 質は、UV-B に比べ極端に低い。ところが表皮に存在する色素細胞はメラニンを作っているた め、そのメラニンが UV-A で生じる活性酸素や活性窒素に結合すると、電子が励起され、その 結果 CPD が生成される。さらに、UV-A を浴びた色素細胞では、紫外線暴露が終わった後、数 時間後まで連続して CPD が生成されることが明らかにされた。そのため、がんの中でも致死 率が高いメラノーマが主に UV-A が原因で発症すると考えられている。日焼けで皮膚を黒くす るメラニンは、皮膚の細胞を紫外線から守る(主に表皮角化細胞の核の上に帽子のごとく乗っ かり紫外線から細胞核を守り CPD 生成を抑える)だけでなく、他方、メラノーマの原因にな る「両刃の剣」である。UV-A を皮膚に当て、皮膚を黒くする日焼けサロンはメラノーマの発 症を高める可能性がある。

177

(9)紫外線ばく露による眼への影響

紫外線ばく露による眼への影響については、急性の紫外線角膜炎*のほか、白内障**や翼状 片***が知られている。

白内障に関しては、UNEP 環境影響評価パネル報告書(2010)において、皮質白内障に ついては紫外線の関与が明らかであるが、核白内障については紫外線ばく露が関係するこ とを示す知見は限られており、また、後嚢下白内障に関しては紫外線との関連を示す十分な 証拠はないとしている。同報告書では、翼状片に関しても、太陽光へのばく露が重要なリス ク要因であることを示している。そのほか、瞼裂斑****に関しても紫外線の関与が指摘され ている。

眼に対する影響は、太陽からの直射日光よりも、散乱又は反射した紫外線の寄与が大きい、 又は雲の存在により増幅される。そのため、気候変化の影響を受けるとしている。

(10)紫外線対策

多くの白色人種では、オゾン層破壊による UV-B 放射照度の増加よりも、おそらく日光ば く露に関わる行動様式の変化の方が、人の健康に重大な影響を及ぼしている。日照の多い地 域への休暇旅行の増加、身体を覆う部分が少ない服の着用、日に焼けた肌になりたいという 願望といったものはすべて、個人の UV-B 放射に対するばく露量が数十年前と比べて増加 している要因となっている可能性が高い。このような行動様式の変化は、健康に悪影響と良 い影響の両方をもたらす。なお、WHO では、多くの若者に利用されている sunbed (日本 語で日焼けマシン)の利用制限(利用禁止)を求めており、その対象の一つに 18 歳以下を あげている*****。

太陽の紫外線放射への過剰ばく露を避ける方法としては、屋内で過ごす、日陰に避難する、 UV カットの目的で衣服、帽子やサングラス、紫外線カットのメガネを着用する、傘をさす、 日焼け止めを塗る、などがある。これらの方法で、日光ばく露の有害な影響と良い影響のバ ランスをとるようにする。推奨される屋外活動時間は、肌の色、年齢、服装といった個人的 な要因、さらには場所、時間帯、季節といった環境的な要因に応じて、個人ごとに異なるた め、実際にはそのようなバランスを達成することは難しいだろう。個人差がある中で、それ ぞれの人にとって最適なビタミン D 値、そしてそれを達成にするのに必要な日光ばく露の 量およびパターンを定義するのには、現在のところ不確実性が伴う。

このような中、UV インデックスは有効な指標であり、紫外線ばく露を管理するツールと

^{*}紫外線に強くばく露した際に見られる急性の角膜の炎症で、雪面など特に反射の強い場所で起きる「雪 目」が有名。

^{**} 眼球の中の水晶体が濁ることをいい、老化の一部である。

^{***} 白目の表面を覆っている半透明の膜である結膜が、目頭(めがしら)の方から黒目に三角形状に入り 込んでくる病気。

^{****}白目の一部が黄色く濁って盛り上がる病気。

^{****} IARC では sunbed(紫外線を発する日焼けマシン)をヒトに対する発がん性あり・グループ1に分類 している。

して活用するためのより一層の努力が期待される。

- 1)日陰
 - 紫外線ばく露を減らす最も効果的な方法は日中の光を避けることである。特に、屋内 で過ごすのが効果的である。
 - ・ 濃い樹木の影の利用は屋外における紫外線ばく露の防止に大きな効果があるが、海
 岸での日傘の効果は小さい。
 - 適切な日陰の作成にあたっては、紫外線の散乱、反射を最少とする材料、デザインが 必要となる。
 - 学校における、特に昼休みの紫外線対策の効果的な一例として、校庭に特製の旗を立てることが示されている。

2) 衣服

- 織物は、覆っている場所については、紫外線のばく露を減らす効果は明らかである。
- 織物に関して、紫外線ばく露効果を示す統一的な基準はないが、UPF (UV protection factor)という考え方が浸透しつつある。
- 織物の紫外線透過には、生地の素材、隙間、色、重さ、厚さが関係しており、伸ばし、 湿り気、洗濯、湿度、気温がどのように影響するかははっきりしていない。
- 傘、帽子と衣服の色は紫外線対策に加え、夏では熱中症の観点からの配慮も必要である。黒は紫外線だけでなく可視光線、赤外線も吸収するため黒い傘や帽子では頭部、 顔などかなり熱く感じ、体温上昇に関与すると考えられ、真夏は避けるほうが良い。 特にコロナ感染予防対策としてマスクを着用しているため熱中症になりやすい。理 想の傘は、外が白で内面は黒が良い。衣服も、真夏の太陽を浴びる条件下での黒は避 けるほうが熱中症対策として好ましい。涼しい季節では、内外面とも黒の傘でよい。

3)サンスクリーン剤

サンスクリーン剤は SPF の値(6から 50+)により紫外線防御効果が異なる。SPF30の サンスクリーン剤が健康維持の目安として推奨されるケースがよく見られる。

サンスクリーン剤は、性能評価試験に用いられた用量(2mg/cm²)ではなく、より低用量 (0.5mg/cm²)で用いられることが多く、その場合には表記された SPF の性能は認められ ない(SPF16→SPF2)ので注意が必要である。また、サンスクリーン剤の塗り直しが不十 分なケースが少なくない。

一方で、紫外線の功罪を考慮して、SPF 値の高いサンスクリーン剤の使用を特に紫外線 の強い時に限定すべき、あるいはサンスクリーン剤は UV インデックスが一定値以上の場 合に使用すべき、といった対応をとる国もある。

4)眼の紫外線対策

紫外線放射に対する眼のばく露を避けるには太陽光を避けることが効果的だが、完全に 実行することは難しい。眼に直接太陽光が当たるのは稀であるが、紫外線放射に強くさらさ れる場所又は地表面からの反射が強い場所では眼の保護を常に行う必要がある。

ガラス製又はプラスチック製のメガネには、紫外線カットのレンズが多く使われるよう

になってきており、サングラスではなくても UV-B 放射の全部及び UV-A 放射の大部分を 吸収することができる。なお、レンズの小さいものや顔の骨格にあわないサングラスの場合、 周辺の紫外線放射が側面から眼に入る可能性がある。このような時、色の濃いサングラスを かけていると、眼に入る光の量が少なくなるため瞳孔が普段より大きく開き、影響が悪化す る可能性があるので注意が必要である。紫外線放射をブロックするソフト・コンタクトレン ズは角膜全体を覆って、あらゆる角度から進入する紫外線放射に対して眼を効果的に保護 する。

参考資料 2. 紫外線による陸域生態系への影響

(1)紫外線に対する植物の対応メカニズム

UV-B 放射に対して陸域生態系は極めて多様な反応を示す。動物は UV-B 放射を避けるために移動することができるが、植物は移動することができない。しかし、それを補うように 農作物及び森林樹種を含むほとんどの植物は紫外線を防御する複数のメカニズムをもっている。

DNA、タンパク質、脂質などの生命維持に必須な生体分子は UV-B 放射に対して一般に 感受性が高い。しかし、UV-B が葉に当たっても、そのごく一部しか内部組織に到達するこ とができない。研究に用いられたほとんどの植物種で、UV-B 放射は葉表皮細胞における紫 外線吸収物質の合成を誘導し、UV-B 放射が葉の中の重要な生体物質に到達するのを阻止す るメカニズムをもっている。また、葉の肥厚や葉を保護するワックス層を変化させることに より UV-B 放射にさらされる内部組織の比率を減らすことも知られている。しかしながら、 このような遮蔽機構をかいくぐって内部に到達した UV-B によって DNA は損傷を受ける。 これに対して植物は DNA の損傷を修復するいくつかのメカニズムをもっている。

DNAに紫外線が吸収されることにより形成されたシクロブタン型ピリミジンダイマーは、 UV-A~青色光の波長域の光をエネルギーとして、ダイマーを切断する酵素(DNA photolyase)によって修復される。また、もう一つの主要なDNA損傷産物である(6-4)光 産物も、損傷に特異的な酵素により光修復される。ヒトは進化の過程で、このような光修復 機構を失ったと考えられている。

中~高強度の UV-B 照射による植物のストレス応答には、光合成遺伝子の発現レベルの 低下及びフラボノイド生合成に関わる遺伝子、抗酸化酵素遺伝子や病原菌感染に関連した 遺伝子の発現レベルの上昇などがあり、これらのシグナル伝達には UV-B により細胞内に 生成される活性酸素が重要な役割を果たしていることが明らかにされつつある。一方、DNA 損傷の形成や傷害発現を伴わない比較的低線量の UV-B は、植物の成長、分化などの生活環 の諸過程を制御しているが、他の種々の光受容システムと共に、その制御には UV-B に特異 的な光受容体が関与していると考えられている。

(2)植物の対応メカニズムによる生態系への影響

紫外線は草食動物の食性と捕食者・被食者相互作用を変化させ、それが生態系における栄 養相互作用、エネルギー移動、食物網を変化させる。UV-Bを照射された植物では葉に含ま れる生体成分の組成が変わり、植物と草食性昆虫の間の相互作用が影響を受ける。成分組成 が変わった植物の葉は病害虫を含む草食生物にとって食糧としての魅力が低下し、落葉後 にバクテリアや菌類などの微生物により土中で分解するスピードが変わる。このように、植 物が UV-B 照射を受けると、動物の嗜好性や微生物による分解が変化し、動物への食糧供給 と土壌内での栄養素の循環に影響を与えるので、生態系レベルでの影響は相当に大きなも のになりうる。なお、昆虫等の消費減退の一部は昆虫への UV-B 放射の直接的影響によるも のもある。UV-B 放射が強くなれば、一般的に草食動物が植物を食べる量は少なくなるが、 逆に大気中の CO₂ が多くなれば草食性が強まる。したがって、UV-B の放射量と CO₂ の将 来のレベルは植物の生産と昆虫への食糧供給の両面を制御する上で重要となるであろう。

上に述べたように、UV-B に対応するための植物の変化は、植物が枯れた後の分解に影響 を与える可能性がある。紫外線吸収物質生成の誘導や UV-B 放射に耐えるようにする葉の 構造的変化は、葉が落ちた後も分解されにくくする。また、UV-B 放射は土壌中の微生物の 構成を変化させるが、これも落ち葉の分解されやすさに影響を与えうる。落ち葉が直接太陽 光にさらされると光化学的に分解されるが(光分解)、微生物と光分解の双方の分解過程の 変化は将来の生態系における炭素隔離と栄養素循環に重大な結果をもたらす。このように、 紫外線放射は葉の生化学(成分組成)と微生物の多様性の変化を通じて間接的に、また光分 解を通じて直接的に分解に影響を与えている。

(3)紫外線や気候変化による植物への影響の例

過去数十年来、温度と UV-B 放射が著しく増大している高緯度地域では植物の進化が環 境の変化に追いついていない可能性がある。南極大陸及び南米南端では、比較的低レベルの UV-B 放射の環境に適応している植物が、オゾン層破壊による UV-B 放射レベルの上昇によ って影響を受けている。現在、南半球におけるオゾンによって引き起こされる地域気候の変 化は、南極のコケ類や他の植物群落と同様に、南アメリカのアルティプラーノの独特な高地 森林帯で生息する多くの種の生息地と生存を脅かしている。UV-B 放射の植物の成長に対す るマイナスの影響は通常の場合比較的小さいが、影響の大きい種もある。時間の経過ととも に、種間のこれらの相違は陸域生態系の変化をもたらすであろう。特に UV-B 放射が今後数 十年にわたり高いままの南極などの地域ではその可能性がある。

参考資料3. 紫外線による水圏生態系への影響

(1)紫外線による水圏生態系の生産性低下

紫外線の中でも、UV-Bが水圏生態系に対してその生産性の低下と生殖機能障害及び発育 障害に最も影響を与えていることが、近年までの数多くの生物群や種において明らかとな ってきた。その対象生物にはバクテリアから植物プランクトン、大型藻類、従属鞭毛生物、 微小動物プランクトン、動物プランクトン、甲殻類の幼生、さらに稚魚まで含まれる。

生物生産の低下は、食物連鎖のすべての段階へと影響することになり、種の構成及び生態 系の構造や機能に変化を起こす可能性がある。また、基礎生産量の低下は CO₂の海洋への 吸収容量の減少をもたらす可能性がある。

水圏生態系への紫外線の影響は波長に強く依存する。波長ごとに重み付けした紫外線の 作用を表す係数(作用スペクトル)は、波長とともに UV-B 領域から UV-A 領域へと指数関 数的に減少する(Neale と Kieber, 2000)。作用スペクトルは対象とする生物群や種や発生 段階によって異なり、生態系における栄養段階が低いほど、紫外線の長波長域まで及び、そ の傾斜は緩やかになる。

(2)紫外線に対する水圏生態系の対応メカニズム

水圏生態系のバクテリアや植物プランクトンを含む藻類も、陸域生態系の植物と同様に、 紫外線吸収物質(マイコスポリン様アミノ酸)を細胞内に産出することができる。現在まで に水圏生態系では20種類の紫外線吸収物質が報告されている。ハームフル・アルガル・ブ ルーム(HABs)*としてよく知られている渦鞭毛藻は紫外線吸収物質を他の藻類より多く含 んでおり、紫外線が増加すると、細胞内に紫外線吸収物質を蓄積させて自ら細胞を防御する。 ただし、そのサンスクリーンとしての役割を実験的に証明した例は限られているのが現状 である。

(3)UV-Bの影響と鉛直混合の関係性

水圏生態系における特徴的な現象として、UV-Bの影響をよく受ける遊泳力のない生物が、 水の鉛直混合に身を任せて水中に生息していることが挙げられる。湖沼や海洋のメソコス ム(大型の擬似海洋環境実験水槽)の実験によると、水中でのUV-B、UV-A、及び光合成有 効放射(PAR)**の透過は異なり、UV-Bは最も浅い層までしか透過しないことが明らかに されている。温帯域の夏季によく見られる水温躍層***上にある表層混合層(0~6m)内では

^{*} ハームフル・アルガル・ブルームとは、人類にとって有害な植物プランクトンを含む藻類一般を意味 し、Harmful Algal Blooms(HABs)のことである。従来は赤潮生物と呼ばれていた。

^{**} 光合成有効放射(PAR)とは、400から 700nm の波長の可視光をさし、Photosynthetically Active Radiation の略である。また、PhAR ともいう。

^{***} 水温躍層とは、表層で水温が急激に変化する層のことをさし、その上層と下層では水の混合は起こり にくい。

水が鉛直混合するため、植物プランクトンは PAR を吸収して光合成を行うが、表層(0~ 1.8m)では UV-B の影響を受ける。この影響の大きさは水の鉛直混合の速度に依存する。 UV-B 照射量の増加によって、群集構造が基礎生産者から細菌へと遷移する可能性があり、 この変化は海洋の表層水での CO₂ 濃度に影響を与える可能性が大きい。現在、鉛直混合を 考慮した UV-B の影響を評価するモデルも提唱されている。

(4)有色溶存有機物とUV-Bの相互の影響

植物プランクトンを含む藻類を動物が摂取した際に食べ残しのバクテリアによる分解に よる水中に溶出して発生する有色溶存有機物(CDOM)は、UV-Bの水中での透過率を減少 させ、UV-Bの影響を軽減する。これによって、水中の基礎生産量が増加し、したがって CDOMの増加に寄与する。一方、バクテリアはCDOMの分解にも深く関わりあっている。 また、UV-Bによって CDOM は分解されるので、基礎生産量が UV-Bの影響をより多く受 けるので減少する。このように、CDOM は地球規模での炭素循環においても一定の役割を 果たす。

(5) 南極海域での海洋生物への紫外線の影響

植物プランクトンによる1日当たりの1m²の水柱当たりの基礎生産量は、UVの水中透 過特性によって深度により波長が変わることにより、またオゾン全量によっても変化する と予測されている。植物プランクトンが生息している表層水の混合深度と混合速度を考慮 すると、水柱当たりの基礎生産量はさらに1.5~3.5%減少する。重み付けした生物作用スペ クトル、混合深度及び混合速度の組み合わせによっては、オゾン全量の減少による紫外線の 影響により、水柱当たりの植物プランクトンの基礎生産量は南極海で最大8.5%減少すると 予測されている(Neale と Kieber, 2000)。

参考資料 4. 紫外線による材料の損傷

(1)紫外線等による材料劣化

オゾン層破壊に伴う有害紫外線の増加と気候変化との相互作用によって、世界遺産や文 化財に何らかの損傷がもたらされることが危惧されている。様々な天然材料(木材、羊毛等) や人工合成材(プラスチック等)は、UV-Bにより光劣化が起こり、変色や強度の低下など の損傷が促進される。そのため、UV-B照射量が増加すると劣化が速まり、特に気温が高く 日射量が多い熱帯地域では材料の劣化が著しく、深刻な事態が予測される。

表 3-資-1 に屋外での材料劣化に影響を与える環境要素を示したが、気候変化は天然材料 と人工合成材の紫外線に起因する劣化の速さを変化させる可能性がある(UNEP-EEAP, 2010)。劣化の速さは、高温、高湿、大気汚染物質の存在によって加速される。

	UV-B	温度	湿度	大気汚染物質
プラスチック	非常に強い	強い	弱い	弱マン
木	強い	中程度	非常に強い	弱い

表 3-資-1 屋外の材料劣化に影響を与える各種要因の効果

※「非常に強い」「強い」「中程度」「弱い」の4段階で評価している。

(2)材料の紫外線対策

太陽紫外線による材料損傷を抑制するために、光安定剤や表面塗装剤が広く用いられる。 近年、紫外線への耐性が向上した新種のプラスチック製品や紫外線による損傷を抑制する 添加剤(紫外線吸収剤、光安定剤)などの開発が進んでいる。最近の触媒の進歩により発見 されたメタロセンプラスチック(ポリエチレンとポリプロピレン)は、紫外線への耐性など の特性が向上した(UNEP-EEAP, 2003)。その他、従来の高分子光安定剤(HALS)2つ以 上を混合してプラスチックに使われた時に、相乗的な効果があることがわかっている。光安 定剤の効果の向上は、紫外線と気候変化による影響に対するプラスチック配合物の安定化 にかかるコストを最小化させるために重要である(UNEP-EEAP, 2003)。さらに最近では、 従来使われてきた添加剤と比べて粒子径が一桁又はそれ以上小さいナノスケール添加剤の 開発が進められていることから、添加剤としての効果、さらに光安定剤としての効果につい ての評価が重要となっている(UNEP-EEAP, 2007)。

参考資料 5. オゾン層破壊と大気質への影響

オゾン層破壊が大気質や対流圏大気組成に及ぼす影響についての最近の研究成果に関して、UNEPの環境影響評価パネル報告書(UNEP-EEAP, 2014)に総括されている。

(1)オゾン層破壊物質の代替物質の影響評価

成層圏オゾン層の破壊は、人為的に放出されるオゾン層破壊物質(ODS)の増加によって 引き起こされた。これまでオゾン層の保護を目的として、ODSの生産や使用、ならびに放 出に対する規制が進められる。ODSとして規制対象となっている物質は分子内に塩素や臭 素元素を含む長寿命有機化合物である。

ODS に対する規制が進む中、**ODS** の代替となる様々な候補物質の開発も進められてきた。代替物質の中には、分子内に、フッ素、塩素、臭素と言ったハロゲン原子を組んだ有機物が含まれている。また、人為起源以外にも生物活動によってもハロゲン原子を含んだ有機物が大気に放出されている。更に、領域によっては、活性ハロゲン化学種が対流圏大気における重要な酸化剤としての役割を果たことも知られている。

臭素化メタン類

ブロモホルム (CHBr₃) やジブロモメタン (CH₂Br₂) は海洋からも大気に放出されてい るが、その放出量の推定精度は向上している。大気に放出されたブロモメタン類の光酸化反 応による臭素原子の放出に伴う地表レベルのオゾンの破壊も地域によっては観測されてい る。熱帯域はブロモメタン類の放出強度が高い地域であると同時に鉛直輸送も活発な地域 である。ブロモメタン類の光化学的な大気寿命は 1~3 週間程度と短寿命であるが、それに も関わらず、熱帯域で放出されたブロモメタン類の 90%以上が成層圏に輸送されると見積 もられている。

1-ブロモプロパン

1-ブロモプロパン(n-C₃H₇Br)は、殺虫、薬剤、第四級アンモニウム化合物合成に使用 されているほか、ODS である CFC-113 やメチルクロロホルムの代替物質として金属や電 子部品の洗浄剤、接着剤の噴霧剤などの用途で用いられてきた。アメリカ環境保護庁 (USEPA)の新規代替物質に関する政策(SNAP)では、工業用機器のための代替洗浄剤 としての用途のみに対して使用承認を行っている。しかしながら、実験動物を用いた毒性試 験から、発がん性を始めとした毒性が認められている。

一酸化臭素

一酸化臭素(BrO)は南半球の清浄海洋大気においてジメチルスルフィド(DMS)の主要な酸化開始剤の一つとして働いていると考えられている。DMSの大気酸化は海洋大気における主要なエアロゾル生成源であり、雲形成や光散乱に寄与することで、気候にも影響を及ぼす。一酸化臭素の主な生成源は海塩粒子と考えられている。

塩化メタン類

四塩化炭素は ODS の一つとして規制対象になっている物質であるが、大気中の四塩化炭素濃度の減少は削減スケジュールからの予想よりも緩やかであることから、確認されていない発生源が存在する可能性がある。

クロロホルムの発生源については、人為発生源、自然発生源とも今なお、不確かな部分が ある。充分には認識されていない主要な自然発生源の一つの候補として泥炭沼地が考えら れている。泥炭沼地の様な発生源は今後の気候変化や土地利用の変化によって、その発生量 は影響されるため、今後の推定に不確実さをもたらす可能性がある。

HCFO 1233zd(E)

ヒドロクロロフルオロカーボン(HCFC)はCFCの代替物質として初めに検討された物 質であるが、OH ラジカル反応による大気寿命が必ずしも充分には短くなく、成層圏への塩 素原子の供給源となり得る可能性があることから、現在では規制対象となっている。

これに対し、trans-1-クロロ-3,3,3-トリフルオロプロペン(HCFO 1233zd(E))は発泡 剤、冷媒、ならびに溶媒の用途で代替物質として最近開発された物質である。一連の毒性試 験でも低い毒性レベルを示している。なお、HCFO(ヒドロクロロフルオロオレフィン)は HCFC の一種だが、C=C 二重結合を有しており大気寿命が通常の HFC に比べても著しく 短いため、ODP 値は極めて小さい。それ故、C=C 二重結合を有している(オレフィン:ア ルケン系化合物)ことを明示し、HCFC と区別するために HCFO と表記されている。

フッ化スルフリル

規制対象となっている臭化メチルの代替物質として燻蒸剤として用いられており、今後 使用が拡大することも予想される。フッ化スルフリル(SO₂F₂)の大気中での酸化反応によ る寿命は長く(>300年)、主要な除去過程は雲水への溶け込みと降水過程と考えられる(想 定される寿命は数週間)。最終的には海水中で、無機硫黄とフッ素への分解と考えられてお り、分解生成物による環境影響も特段の懸念は示されていない。なお、フッ化スルフリルは 大きな温暖化ポテンシャル(GWP値)を有していることが報告されている。

ヨウ化パーフルオロブチル

1-ヨウ化パーフルオロブチル(n-C₄F₉I)は、航空機の代替クリーナー、宇宙産業での酸 素システムの洗浄剤などの用途での CFC-113 の代替物質の候補の一つである。大気中では 光分解が主要な消失過程と考えられ、その寿命は数時間程度と推定されており、ODP なら びに GWP も非常に小さい。

ヒドロフルオロオレフィン

ヒドロフルオロオレフィン(HFO)は、HCFO(ヒドロクロロフルオロオレフィン)と同様、HFC(ヒドロフロロカーボン)の中でも C=C 二重結合を有するアルケン系化合物の総称として用いられている。HFO1234zeとHFO1234yfは冷媒、発泡剤、エアロゾル噴霧剤

等の用途での代替物質として開発された物質である。HFO1234ze に関しては、急性毒性や 遺伝毒性試験では、低い毒性を示している。また大気寿命も短く、GWP も小さい。

(2)オゾン層破壊に伴う大気質と対流圏大気組成に対する影響 OH ラジカル

メタン、HCFC、HFC などの温室効果ガスの大気寿命は OH ラジカルとの反応に大きく 依存する。また OH ラジカルの関与する化学過程は光化学オゾンやエアロゾルの生成に大 きく影響している。よって、OH ラジカル濃度やその長期的な変化を理解し、今後の変化を 予測することがオゾン層破壊の大気質への影響を評価する上で大切である。

OH ラジカルは反応性が高く、その大気中濃度は極めて低く、また環境条件の変化に極め て敏感に応答するため、OH ラジカルの直接計測は容易ではない。一方、大気質を評価する 上で、OH ラジカルの挙動を理解することは重要であり、OH ラジカルの濃度変化や反応性 を直接追跡することが大気光化学モデルの妥当性評価の点でも大切である。最近の OH ラ ジカルの直接計測法の進展や応用例の増大に加え、相互検証実験なども進み、直接計測法を 利用した観測も増えてきた。その結果、OH 濃度とオゾンの光分解速度(J(O₃))との間に 直線関係が存在*することが最近の OH 直接計測法を用いた観測からも確かめられた。J(O₃) がオゾン全量に依存することから、オゾン全量が 1%減少するごとに J(O₃)は約 1.5%増加す ると予想される。

光化学的に生成した OH ラジカルは、大気中での微量成分との反応で消失するが、その 一部は大気中での光化学反応において再生される。都市域やいくつかの森林地帯で行われ た OH ラジカルの直接計測では、観測された OH ラジカル濃度と数値モデルから予測され る濃度との間に比較的良い一致が認められている。一方で、イソプレン (2-メチル-1,3-ブ タジエン)などの植物起源炭化水素濃度が高く NOx 濃度が低い地域では、実測された OH ラジカル濃度が数値モデルから予想される濃度に比べてはるかに高い、という現象が観測 されている。この事は、低 NOx 条件下でのイソプレンなどの植物起源炭化水素の OH 酸化 反応系の反応機構が充分には理解できていない可能性を示唆している。また最近では、OH ラジカルの反応性を直接計測する手法も開発され、色々な環境下での OH 反応性の観測が 行われた結果、いくつかの観測では、実測された OH 反応性は計測される反応性ガス濃度 から予想される反応性に比べて大きくなる現象が見い出されており、OH ラジカルの消失に 関与する未計測の物質の存在が指摘されている。

OH ラジカルの全球的な濃度は大気中の微量成分(例:メチルクロロホルム)をトレーサ ーとして用いて見積もられている。OH ラジカルの平均濃度やその長期的トレンドについて は、観測データからの見積もりや数値モデルによる推定のいずれにおいても今なお、不確実

^{*} OH ラジカルの主要な生成源がオゾンの光分解によって生成する励起酸素原子と水蒸気との反応である ことから、OH ラジカル濃度と J(O3)との間には直線関係の存在が期待される。

第3部参考資料

性が残されている。CO や NOx の発生量の不確かさや光化学過程のメカニズムの理解の不 十分さが原因と思われる。この様な不確実性は存在するものの、数値モデルによる将来の OH ラジカル濃度の変化を推定した結果、OH 濃度は CH4、CO、NOx などの今後の放出量 に大きく依存し、北半球と南半球で将来の OH 濃度分布が非対称的になる可能性があるこ とが指摘されている。更に、微量気体の放出量に変化がない条件では、成層圏オゾンが 1980 年レベルに回復すると OH の全球平均濃度は 1.7%減少するとのモデル予測もある。

オゾン

対流圏のオゾンは都市から地球規模のいずれのスケールにおいても注目すべき最も重要 な大気汚染物質の一つである。対流圏におけるオゾンの供給源は成層圏からのオゾン流入 と対流圏での光化学的なオゾン生成である。特に後者の光化学的なオゾン生成では、VOC とNOxが関与するため、今後の対流圏オゾンの変化には、これらの汚染物質の種類やその 放出量の変化が重要な因子である。さらに、太陽紫外線も対流圏オゾン量の変化に影響を及 ぼす因子の一つである。

都市レベルでの地表オゾン濃度のトレンドは都市ごとに異なっているが、ヨーロッパや 北アメリカの都市では減少傾向が、一方アジアの都市では増加傾向が報告されている。地域 スケールで見ると、バックグラウンドオゾンは多くの地域で増加傾向が認められている。そ れぞれの地域でのオゾン濃度は、観測を行っている近傍での光化学オゾン生成のみならず、 遠隔地域で生成されたオゾンの長距離輸送にも依存するため、オゾン前駆体の放出量が増 大している地域の影響が半球規模でのオゾン濃度のトレンドに現れる可能性もある。一方、 オゾンゾンデ観測データや清浄地域での地表オゾンのモニタリングデータの解析からは、 過去 20~40 年間でのオゾンの増加はその初期に顕著に認められ、逆に近年は明瞭な増加傾 向が殆ど認められないとの報告もある。

対流圏のオゾン濃度は、対流圏での光化学的なオゾン生成以外に、成層圏からのオゾンの 流入によっても影響を受ける。成層圏オゾンの変化は、紫外線量に影響を及ぼすだけでなく、 成層圏から対流圏へのオゾンの流入量にも影響を及ぼす。今後の温室効果ガスの増加と成 層圏オゾンの回復は大気の循環を加速し、成層圏から対流圏へのオゾンの輸送量を増加さ せる方向に働くものと予想される。

最近の全球化学輸送モデル実験から、今後のオゾン層の回復に伴う太陽紫外線の減少は 地表オゾンを増加させる方向に作用し、特にその影響は高緯度ほど大きいとの報告もある。 しかしその一方で、オゾン層の回復に伴う紫外線量の変化が直接オゾン濃度に及ぶす影響 は限定的であるとする報告も有り、紫外線量の変化の影響評価には大きな不確実性がある。

エアロゾル

対流圏エアロゾルは人の健康や生態系への影響だけでなく、エアロゾルによる太陽光の 散乱や吸収並びに雲核として働きを通して、直接・間接的に放射強制力に影響を及ぼす。オ ゾン層破壊は、特に大気中での化学反応によって二次的に生成されるエアロゾル(硫酸塩、 硝酸塩、有機物等を含有するエアロゾル)に影響を及ぼす可能性があると考えられる。二次

189

エアロゾルの中でも有機物質で構成されるエアロゾル(有機エアロゾル)については、その 生成機構やエアロゾルの消失過程を十分に把握できているとは言えず、未だに数値モデル は実測のエアロゾル量を過少評価する傾向にある。

紫外線は二次エアロゾルの生成に重要であると共に、その消失にも何らかの役割を果た していると思われる。しかしながら、紫外線の変化が二次エアロゾルの収支に如何に影響す るかは十分には評価されていない。

将来のエアロゾル濃度の変化に関しては、ブラックカーボンや有機エアロゾルは、今後数十 年間は引き続き濃度が増加し、その後減少傾向に移ると予想されているが、その時期や程度 は他の汚染物質の放出量を含めたシナリオに強く依存する。また気候変化がエアロゾルに 及ぼす影響評価についても極めて大きな不確かさが存在している。気候変化は気温や水蒸 気量の変化、植物活動の変化に伴うエアロゾル前駆体の放出量の変化などを介してエアロ ゾルの生成速度に影響する。更には山火事の発生頻度・強度の変化もエアロゾル量に大きな 影響を及ぼす。一方、エアロゾルの光学特性、吸湿特性、雲核生成特性は放射強制力に影響 を及ぼす。またこれらのエアロゾルの物理・化学特性はエアロゾルの生成、成長、ならびに エージング過程に依存する。この様な複雑なフィードバックの存在が、気候変化がエアロゾ ルに及ぼす影響の評価を難しくしている。

第4部 巻末資料

1. オゾン層保護対策

1-1. オゾン層破壊物質等の概要

(1) オゾン層を破壊する物質に関するモントリオール議定書対象のオゾン層 破壊物質(特定物質)

モントリオール議 定書		物 質 名	化 学 式	2018年 科学評価 パネル 大気中寿命 (年)	オゾン層破壊係数		地球温暖化 係数
					モントリオール 議定書附属書	2018 年 科学評価 パネル	第4次 IPCC報告書 (100年 GWP値*)
	グループ I	CFC-11	$CFCl_3$	52	1	1	4,750
	(クロロフルオロカ	CFC-12	CF_2Cl_2	102	1	0.81	10,900
P/ L	ーボン)	CFC-113	$C_2F_3Cl_3$	93	0.8	0.82	6,130
附属		CFC-114	$C_2F_4Cl_2$	189	1	0.50	10,000
書		CFC-115	C_2F_5Cl	540	0.6	0.26	7,370
A	グループ Ⅱ	ハロン-1211	CF_2BrCl	16	3	7.7	1,890
	(ハロン)	ハロン-1301	CF_3Br	72	10	19.0	7,140
		ハロン-2402	$C_2F_4Br_2$	28	6	15.7	1,640
	グループ I	CFC-13	CF ₃ Cl	640	1	1.0	14,400
	(その他の CFC)	CFC-111	C_2FCl_5	-	1	-	-
附属		CFC-112	$C_2F_2Cl_4$	63.6	1	-0.98	-
書		等 10 物質					
D	グループ Ⅱ	四塩化炭素	CCl_4	32	1.1	0.89	1,400
	グループⅢ	1,1,1-トリクロロエタン	CH_3CCl_3	5	0.1	0.17	146
	グループ I	HCFC-21	CHFCl_2	1.7	0.04	0.036	-
	(ハイドロクロロフ	HCFC-22	CHF_2Cl	11.9	0.055	0.034	1,810
	ルオロカーボン)	HCFC-123	$C_2HF_3Cl_2$	1.3	0.02-0.06	0.01	77
		HCFC-124	C_2HF_4Cl	5.9	0.02- 0.04	0.022	609
		HCFC-133	$C_2H_2F_3Cl$	3.1	0.02-0.06	0.017	-
		HCFC-141b	CH_3CFCl_2	9.4	0.11	0.102	725
ß 61		HCFC-142b	CH_3CF_2Cl	18	0.065	0.057	2,310
属		HCFC-225ca	$CF_3CF_2CHCl_2$	1.9	0.025	0.025	122
書 C		HCFC-225cb	CF ₂ CICF ₂ CHCIF	5.9	0.033	0.033	595
		等 40 物質			他		
	グループ Ⅱ	HBFC-22B1	$CHF_{2}Br$	-	0.74	-	_
	(ハイドロプロモフ	等 34 物質			他		
	ルオロカーボン)						
L	グループⅢ	ブロモクロロメタン	CH_2BrCl	-	0.12	-	-
	附属書E	臭化メチル	CH_3Br	0.8	0.6	0.57	5
	附属書 F 気候変動枠組条約における削減対象の HFC(HFC-161 を除いた 18 物質)						

*「100 年 GWP 値」とは、対象となる物質の影響を 100 年間にわたって積分した値である。積分す る年数(他に 20 年値や 500 年値などがある)によって GWP 値は変化することがある。 「地球温暖化係数」とは CO₂ を 1 とした場合の温暖化影響の強さを表す値。

			2018 年		地球温暖化係数**
京都議定書	物質名	化学式	科学評価 パネル	オゾン層	第4次 IPCC
			大気中寿命	破壞係数	報告書 (100 年 CWD 位)
			(年)**		(100年GWP値)
ハイドロフルオロ	HFC-23	CHF_3	228	0	14,800
カーボン (HFC)	HFC-32	CH_2F_2	5.4	0	675
	HFC-41	CH_3F	2.8	0	92
	HFC-125	$\mathrm{CHF}_2\mathrm{CF}_3$	30	0	3,500
	HFC-134	$\mathrm{CHF}_2\mathrm{CHF}_2$	10	0	1100
	HFC-134a	CH_2FCF_3	14	0	1,430
	HFC-143	CH_2FCHF_2	3.6	0	353
	HFC-143a	CH_3CF_3	51	0	4,470
	HFC-152	CH_2FCH_2F		0	53
	HFC-152a	CH_3CHF_2	1.6	0	124
	HFC-161	CH_3CHF_2		0	12
	HFC-227ea	CF_3CHFCF_3	36	0	3,220
	HFC-236fa	$CF_3CH_2CF_3$	213	0	9,810
	HFC-236ea	CHF_2CHFCF_3	11.4	0	1,370
	HFC-236cb	$CH_2FCF_2CF_3$	—	0	1,340
	HFC-245ca	$\rm CH_2FCF_2CHF_2$	6.6	0	693
	HFC-245fa	$\mathrm{CHF}_{2}\mathrm{CH}_{2}\mathrm{CF}_{3}$	7.9	0	1,030
	HFC-365mfc	$CH_3CF_2CH_2CF_3CF_3$	—	0	794
	HFC-43-10mee	$CHFCHFCF_2CF_3$	17.0	0	1,640
パーフルオロカー	PFC-14	CE4	>50.000	0	7.390
ボン	PFC-116	C_2F_6	>10.000	0	12.200
(PFC)	PFC-218	C ₂ F ₈	2.600	0	8.830
	PFC-c318	$c-C_4F_8$	3.200	0	10.300
	PFC-31-10	$C_4 F_{10}$	2.600	0	8.860
	PFC-41-12	$C_{5}F_{12}$	4,100	0	9,160
	PFC-51-14	C_6F_{14}	3,100	0	9,300
	パーフルオロシク	c-C ₃ F ₆		0	17,340
	ロプロパン				,
	PFC-91-18	$C_{10}F_{18}$	_	0	>7,500
	等				,
六フッ化硫黄	六フッ化硫黄	SF_6	3,200	0	22,800
三フッ化窒素	三フッ化窒素	NF ₃	569	0	17,200

(2) 気候変動枠組条約における削減対象の代替フロン等4ガス*

* 対象ガスは「地球温暖化対策の推進に関する法律施行令」の第1条、第2条のガスおよび SF6、NF3 とした。

** 地球温暖化対策の推進に関する法律では、地球温暖化係数として第4次 IPCC 報告書の 100 年 GWP 値 を採用している。

1-2.オゾン層保護対策の経緯

1974年	6月	米国カリフォルニア大学ローランド教授とモリーナ博士が CFC によるオゾン層の破壊及びその 結果として人や生態系への影響が生じる可能性を指摘した論文を発表
1982年		南極地域観測隊員の忠鉢繁氏らがオゾンホールを発見
1985年	3月	「オゾン層の保護のためのウィーン条約」を採択
	12月	英国のファーマン博士らが南極上空のオゾン減少について報告
1987年	9月	「オゾン層を破壊する物質に関するモントリオール議定書」を採択
1988年	5月	「特定物質の規制等によるオゾン層の保護に関する法律」(オゾン層保護法)制定・施行
	9月	ウィーン条約発効
		日本、ウィーン条約及びモントリオール議定書に加入
	12 月	ウィーン条約、日本について発効
1989 年	1月	モントリオール議定書発効
		モントリオール議定書、日本について発効
	5月	ウィーン条約第1回締約国会議及びモントリオール議定書第1回締約国会合開催(ヘルシンキ)
1990 年	6月	モントリオール議定書第2回締約国会合開催(ロンドン)
		モントリオール議定書付属書 A グループ I で定められた 5 物質の 2000 年全廃、1,1,1ートリク
		ロロエタンの規制物質への追加等を内容とする議定書の改正等を合意
1991 年	3月	オゾン層保護法の一部改正
	6月	ウィーン条約第2回締約国会議及びモントリオール議定書第3回締約国会合開催(ナイロビ)
	9月	日本、改正モントリオール議定書(1990年改正)を受諾
1992 年	8月	改正モントリオール議定書(1990年改正)、日本について発効
		改正オゾン層保護法(1991年改正)施行
	11 月	モントリオール議定書第4回締約国会合開催(コペンハーゲン)
		CFCの1996年全廃、HCFC、臭化メチルの規制物質への追加等を内容とする議定書の改正等
		を合意
1993年	11 月	ウィーン条約第3回締約国会議及びモントリオール議定書第5回締約国会合開催(バンコク)
1994年	6月	オゾン層保護法の一部改正
	9月	改正オゾン層保護法(1994 年改正)施行
	10 月	モントリオール議定書第6回締約国会合開催(ナイロビ)
	12 月	日本、改正モントリオール議定書(1992年改正)を受諾
1995 年	3月	改正モントリオール議定書(1992年改正)、日本について発効
	6月	CFC 等の回収・再利用・破壊の促進方策を取りまとめ(オゾン層保護対策推進会議)
	12 月	モントリオール議定書第7回締約国会合開催(ウィーン)
		HCFC の 2020 年以降の消費を既設機器の整備用に限定、臭化メチルの 2010 年全廃、途上国
		に対する規制スケジュールの設定を内容とする議定書の調整等を合意
		米国カリフォルニア大学ローランド教授とモリーナ博士らがノーベル化学賞を受賞
1996年	5月	「CFC 破壊処理ガイドライン」を公表(環境庁)
	11 月	ウィーン条約第4回締約国会議及びモントリオール議定書第8回締約国会合開催(コスタリカ・
1		サンホセ)

1997年	9月	モントリオール議定書第9回締約国会合開催(モントリオール)			
		臭化メチルの削減計画の前倒し、臭化メチルの非締約国との貿易の禁止、不法取引防止のため			
		のライセンシングシステムの導入などを合意			
		CFC 等の回収・再利用・破壊の促進方策をとりまとめ(オゾン層保護対策推進会議)			
1998年	6月	「特定物質の規制等によるオゾン層の保護に関する法律第3条第1項の規定に基づく同項第1号			
		から第3号に掲げる事項」(告示)の一部改正			
		「特定家庭用機器再商品化法」(家電リサイクル法)制定(家電製品からの冷媒フロン回収)			
	11 月	モントリオール議定書第 10 回締約国会合開催(カイロ)			
1999年	3月	「CFC 破壊処理ガイドライン」を改訂(環境庁)			
	12 月	ウィーン条約第5回締約国会議及びモントリオール議定書第11回締約国会合開催(北京)			
		HCFC の生産量規制導入などを合意			
		「特定物質の規制等によるオゾン層の保護に関する法律施行令」(政令)の一部改正			
2000年	7月	「フロン回収の手引き」を公表(環境庁)			
		「国家ハロンマネジメント戦略」を UNEP に提出(環境庁他)			
	12 月	モントリオール議定書第 12 回締約国会合開催(ブルキナファソ・ワガドゥグ)			
2001年	3月	家電リサイクル法施行			
	6月	「特定製品に係るフロン類の回収及び破壊の実施の確保等に関する法律」(フロン回収・破壊法)			
		制定			
	7月	「国家 CFC 管理戦略」を UNEP に提出(環境省他)			
	11 月	モントリオール議定書第 13 回締約国会合開催(コロンボ)			
2002年	4月	フロン回収・破壊法(業務用冷凍空調機器からのフロン回収破壊)施行			
	7月	日本、改正モントリオール議定書(1997 年/1999 年改正)を受諾			
		「使用済自動車の再資源化等に関する法律」(自動車リサイクル法)制定、フロン回収・破壊法の			
		一部改正			
	9月	「特定物質の規制等によるオゾン層の保護に関する法律施行令」(政令)の一部改正			
	10 月	フロン回収・破壊法(カーエアコンからのフロン回収破壊)施行			
	11 月	ウィーン条約第6回締約国会議及びモントリオール議定書第14回締約国会合開催(ローマ)			
2003年	1月	「特定家庭用機器再商品化法施行令」(政令)の一部改正(家電製品からの断熱材フロン回収)			
	11 月	モントリオール議定書第 15 回締約国会合開催(ナイロビ)			
2004年	3月	モントリオール議定書第1回特別締約国会合開催(モントリオール)			
	11 月	モントリオール議定書第16回締約国会合開催(プラハ)			
	12 月	「特定物質の規制等によるオゾン層の保護に関する法律施行令」(政令)の一部改正			
2005 年	1月	自動車リサイクル法全面施行(自動車リサイクルシステムの本格稼動)			
	7月	モントリオール議定書第2回特別締約国会合(モントリオール)			
	12 月	ウィーン条約第7回締約国会議及びモントリオール議定書第17回締約国会合開催(ダカール)			
2006年	1月	「臭化メチルの不可欠用途全廃のための国家管理戦略」を UNEP に提出(環境省・農林水産省)			
	5月	「ハロン破壊処理ガイドライン」を公表(環境省)			
	6月	フロン回収・破壊法の一部改正(業務用冷凍空調機器からのフロン回収強化)			
	10 月	モントリオール議定書第 18 回締約国会合開催(デリー)			
2007年	6月	「モントリオール議定書が直面する主要な将来課題に関する対話」会合(ナイロビ)			

	9月	モントリオール議定書第 19 回締約国会合開催(モントリオール)					
		HCFC の規制スケジュールの前倒しを合意					
	10 月	改正フロン回収・破壊法施行(業務用冷凍空調機器からのフロン回収強化)					
	12 月	「特定物質の規制等によるオゾン層の保護に関する法律施行令」(政令)の一部改正					
2008年	4月	「臭化メチルの不可欠用途全廃のための国家管理戦略」改訂版を UNEP に提出(農林水産省)					
	5月	「特定物質の規制等によるオゾン層の保護に関する法律第3条第1項の規定に基づく同項第1号					
		から第3号に掲げる事項」(告示)の一部改正					
	11 月	ウィーン条約第8回締約国会議及びモントリオール議定書第20回締約国会合開催(ドーハ)					
2009年	11 月	モントリオール議定書第 21 回締約国会合開催(エジプト・ポートガーリブ)					
2010年	11 月	モントリオール議定書第 22 回締約国会合開催(バンコク)					
2011 年	11 月	ウィーン条約第 9 回締約国会議及びモントリオール議定書第 23 回締約国会合開催(インドネシ					
		ア・バリ)					
	12 月	「特定物質の規制等によるオゾン層の保護に関する法律施行令」(政令)の一部改正					
2012 年	11 月	モントリオール議定書第 24 回締約国会合開催(スイス・ジュネーブ)					
2013 年	6月	フロン回収・破壊法の一部改正(「フロン類の使用の合理化及び管理の適正化に関する法律」に名					
		称を変更。フロン類の製造から使用、再生・破壊に至るまでのライフサイクル全体にわたる排出抑					
		制対策の強化)					
	10 月	モントリオール議定書第 25 回締約国会合開催(タイ・バンコク)					
	11 月	モントリオール議定書第 26 回締約国会合開催(パリ)					
2014 年	12 月	「特定物質の規制等によるオゾン層の保護に関する法律施行令」(政令)の一部改正					
	4月	フロン回収・破壊法の一部改正(フロン排出抑制法)施行					
2015 年	11 月	モントリオール議定書第 27 回締約国会合開催(ドバイ)					
2016年	7月	モントリオール議定書第3回特別締約国会合開催(ウィーン)					
	10月	モントリオール議定書第 28 回締約国会合開催(ルワンダ・キガリ)					
2016年		HFC の規制物質への追加を内容とする議定書のキガリ改正等を合意					
2017年	11 月	モントリオール議定書第29回締約国会合開催(モントリオール)					
	7月	「特定物質の規制等によるオゾン層の保護に関する法律」の一部改正(モントリオール議定書キ					
2018年		ガリ改正の担保措置)					
	11 月	モントリオール議定書第 30 回締約国会合開催(キト)					
	1月	モントリオール議定書キガリ改正の発効					
		「フロン類の使用の合理化及び管理の適正化に関する法律」の一部改正(廃棄時回収率向上対策					
2019年	6月						
	11 月	モントリオール議定書第 31 回締約国会合開催(ローマ)					
	/1	「フロン類の使用の合理化及び管理の適正化に関する法律」の一部改正(廃棄時回収率向上対策					
2020年	4月	の強化)施行					
	11 月	ウィーン条約第12回締約国会議及びモントリオール議定書第32回締約国会合開催(オンライン					
		ウィーン条約第 12 回締約国会議パート2及びモントリオール議定書第 33 回締約国会合開催(オ					
2021年	10 月	ンライン会合)					
2022 年	10月	モントリオール議定書第 34 回締約国会合開催(モントリオール)					

1-3.国際的なオゾン層保護対策

(1) オゾン層保護のためのウィーン条約

オゾン層保護のためのウィーン条約は、オゾン層保護のための国際的な枠組を定めた条約であり、1985年に採択された。我が国は1988年9月30日に加入。2015年11月現在で 締約国数は197カ国及びEUであり、全ての国連加盟国によって批准された。

本条約においては、締約国が、

- オゾン層の変化により生ずる悪影響から人の健康及び環境を保護するために適当な 措置をとること(第2条第1項)
- ・ 研究及び組織的観測等に協力すること(第3条)
- 法律、科学、技術等に関する情報を交換すること(第4条)

等について規定している。

(2) オゾン層を破壊する物質に関するモントリオール議定書

オゾン層を破壊する物質に関するモントリオール議定書は、ウィーン条約に基づきオゾ ン層破壊物質の削減スケジュール等の具体的な規制措置等を定めた議定書であり、1987年 に採択された。モントリオール議定書の採択後、オゾン層の破壊が予想以上に進んでいるこ とが判明したこと等から、以後、1990年(ロンドン改正)、1992年(コペンハーゲン改正)、 1995年(ウィーン調整)、1997年(モントリオール改正)、1999年(北京改正)及び2007 年(モントリオール調整)及び2016年(キガリ改正)の7回にわたって改正・調整された。 2018年8月現在で締約国数は198カ国及びEUであり、全ての国連加盟国によって批准さ れた。

本議定書においては、

- ・ 対象物質の生産量・消費量の削減スケジュールの設定(第2条)
- ・ 非締約国との貿易の規制(規制物質の輸出入の禁止又は制限等)(第4条)
- ・ 最新の科学、環境、技術及び経済に関する情報に基づく規制措置の評価及び再検討(第 6条)

等について規定している。

対象物質の生産量・消費量の削減スケジュールを図 4-1 に示す。

- 各物質のグループ毎に、生産量及び消費量(=生産量+輸入量-輸出量)が削減される。
- ※1) 附属書グAループIに定められた5物質(CFC-11,CFC-12,CFC-113,CFC-114,CFC-115)。
- ※2)検疫及び出荷前処理用として使用される臭化メチルは、規制対象外となっている。
- ※3)途上国第2グループに属さない開発途上国
- ※4) インド、パキスタン、イラン、イラク、湾岸諸国
- ※5) 先進国に属するベラルーシ、ロシア、カザフスタン、タジキスタン、ウズベキスタンについては、規制措置に差異 を設ける(基準値について、HCFCの算入量を基準値の25%とし、削減スケジュールについて、第1段階は2020 年に5%削減、第2段階は2025年に35%削減とする)。
- ※6) 基準量は、1995~1997 年までの生産量・消費量の平均値又は生産量・消費量が一人当たり 0.3 キログラムとなる 値のいずれか低い値。
- ※7) 基準量は、1998~2000 年までの生産量・消費量の平均値又は生産量・消費量が一人当たり 0.2 キログラムとなる 値のいずれか低い値。
- ※8) 消費量の基準量は、HCFCの1989年消費量+CFCの1989年消費量×2.8%。生産量の基準量は、HCFCの1989年生産量と消費量の平均値+CFCの1989年生産量と消費量の平均値×2.8%。
- ※9) 基準量は、2009 年と 2010 年の生産量・消費量の平均値。
- ※10) 2030 年までの間、冷凍空調機器の補充用冷媒に限り、生産量・消費量の基準量の 0.5%を上限に生産・消費するこ とができる。
- ※11) 2040 年までの間、冷凍空調機器の補充用冷媒に限り、平均として生産量・消費量の基準量の 2.5%を上限に生産・ 消費することができる。
- ※12) 基準量は、1995~1998 年までの生産量・消費量の平均値。
- ※13) 基準量は、HFC の 2020 年から 2022 年の生産量・消費量の平均値 + HCFC の生産量・消費量の基準値の 65% (CO₂換算値⁵)。
- ※14) 基準量は、HFC の 2024 年から 2026 年の生産量・消費量の平均値 + HCFC の生産量・消費量の基準値の 65% (CO₂換算値)。
- ※15) 基準量は、HFCの2011年から2013年の生産量・消費量の平均値+HCFCの生産量・消費量の基準値の15% (CO2換算値)。
- ※途上国の基礎的な需要を満たすための追加生産が認められているほか、生産が全廃になった物質でも試験研究・分析 や必要不可欠な用途についての生産等は規制対象外となっている。

⁵ CO₂換算値は、各生産量・消費量に 100 年間の地球温暖化係数を乗じた数値

(3) 世界におけるオゾン層破壊物質の生産量・消費量の削減実績

図 4-2 モントリオール議定書に基づくオゾン層破壊物質の生産量の推移(1989~2019 年) ただし、基準年以前の空白データは基準年で一定として補完(HCFC を除く)し、基準年と規制開始の間 の空白データは一定の割合で変化するものとして補完(先進国の HCFC については 1990 年・1991 年のデ ータを補完)。単位は ODP トン。(出典) UNEP オゾン事務局ウェブサイト

図 4-3 主要なフロンの年別生産量の推移(1980~2007 年) 集計は AFEAS に登録のあったデータのみ。単位は重量トン。 (出典) The Alternative Fluorocarbons Environmental Acceptability Study (AFEAS) ウェブサイト

ただし、基準年以前の空白データは基準年で一定として補完し、基準年と規制開始の間の空白データは一 定の割合で変化するものとして補完。単位は ODP トン。(出典) UNEP オゾン事務局ウェブサイト

図 4-6 モントリオール議定書に基づく HCFC の消費量の推移(1989~2019 年) ただし、先進国における 1990 年・1991 年のデータは一定の割合で変化するものとして補完。単位は ODP トン。(出典) UNEP オゾン事務局ウェブサイト

図 4-7 冷媒フロン類のストック量及び排出量/年(2002 年・2015 年(推計)) 単位は CO₂ 換算トン。(出典) IPCC/TEAP 特別報告

1-4. 我が国におけるオゾン層保護対策

(1) オゾン層破壊物質の生産・消費の規制

我が国では、オゾン層を破壊する物質に関するモントリオール議定書の締結にあたり、昭 和 63 年に「特定物質の規制等によるオゾン層の保護に関する法律(オゾン層保護法)」を制 定し、平成元年 7 月からオゾン層破壊物質の生産・輸出入の規制を開始し、モントリオール 議定書の義務を着実に履行している。生産量・消費量の削減実績については次ページを参照。

我が国における特定物質(オゾン層破壊物質)の生産量・消費量に関する基準限度

```
・CFC (議定書附属書 A グループ I)
```

期間	生産量	消費量
1993年1月1日~	119,998	118,134
1994年1月1日~	30,000	29,534
1996年1月1日~	0	0

・ハロン

•

期間	生産量	消費量
1993年1月1日~	28,419	16,958
1994年1月1日~	0	0

•	HCFC
---	------

期間	生産量	消費量
1996年1月1日~	—	5,562
2004年1月1日~	$5,\!654$	3,615
2010年1月1日~	1,413	1,390
2015年1月1日~	565	556
2020年1月1日~ _(注)	28	27
2030年1月1日~	0	0

(注)2020年1月1日に存在する冷凍空気調和機器への補充用に限る。

その他の CFC	(議定書附属書 B	グループ I)
----------	-----------	---------

期間	生産量	消費量
1993年1月1日~	1,874	1,865
1994年1月1日~	586	583
1996年1月1日~	0	0

·四塩化炭素

期間	生産量	消費量
1995年1月1日~	2,940	11,232
1996年1月1日~	0	0

・1,1,1-トリクロロエタン

期間	生産量	消費量
1993年1月1日~	15,637	17,279
1994年1月1日~	7,819	8,640
1996年1月1日~	0	0

※HFC 以外は ODP トン、HFC は千 GWP トン

۰HI	FC
-----	----

期間	生産量	消費量
2019年1月1日~	45,036	64,364
2024年1月1日~	30,024	42,909
2029年1月1日~	15,012	21,455
2034年1月1日~	10,008	14,303
2036年1月1日~	7,506	10,727

・臭化メチル

期間	生産量	消費量
1995年1月1日~	3,376	3,664
1999年1月1日~	2,532	2,748
2001年1月1日~	1,688	1,832
2003年1月1日~	1,012	1,099
2005年1月1日~	0	0

消費量

①日本における特定物質の生産量・消費量の推移

表 4-1 特定物質の生産量・消費量(議定書附属書 A)

在 次 ⁽¹⁾	CFC		特定ハロン		年次	CFC		特定ハロン	
十 次	生産量	消費量**	生産量	消費量		生産量	消費量	生産量	消費
基準年 (1986 年)	119, 998	118, 134	28, 419	16, 958					
1989 年	119, 070	109, 916	-	-	2010 年	0	0	0	
1990 年	101, 288	89,056	-	-	2011 年	0	-5	0	
1991 年	100 521	07 090	-	-	2012 年	0	-5	0	
1992 年	109, 551	97,909	20, 140	14, 786	2013 年	0	0	0	
1993 年	51, 212	47, 435	9, 288	7, 527	2014 年	0	0	0	
1994 年	28, 392	26, 455	0	0	2015 年	0	0	0	
1995 年	24, 267	23,062	0	0	2016 年	0	0	0	
1996 年	786	-352	0	-2	2017 年	0	0	0	
1997 年	166	-173	0	0	2018 年	0	0	0	
1998 年	0	-312	0	0	2019 年	0	0	0	
1999 年	0	-21	0	0	2020 年	0	0	0	
2000 年	0	0	0	0	2021 年	0	0	0	
2001 年	0	0	0	0					
2002 年	0	0	0	0					
2003 年	0	0	0	0					
2004 年	0	0	0	0					
2005 年	0	0	0	0					
2006 年	0	0	0	0					
2007 年	0	-5	0	0					
2008 年	0	-1	0	0					
2009 年	0	0	0	0					

(単位: ODP トン*)

(1) CFC の 1989 年及び 1990 年に関しては、各年の 7月から翌年 6月まで、1991 年は 7月から 1992 年 12 月までの18ヶ月間の値。その他に関しては、各年の1月から12月までの値となっている。

⁽出典)経済産業省発表資料より作成

^{*}ODPトンは各生産量・消費量にオゾン破壊係数を乗じた数値。

^{**} 消費量=生産量+輪入量-輪出量

表 4-2 特定物質の生産量・消費量(議定書附属書 B)

:	ODP	トン)
	:	: ODP

在 次 (1)	その他の CFC		四塩	と炭素	1, 1, 1-トリク	100エタン
平次	生産量	消費量	生産量	消費量	生産量	消費量
基準年 (1989 年)	2, 342	2, 331	19, 602	74, 879	15, 637	17, 279
1993 年	808	788	-	-	7, 146	7, 546
1994 年	136	136	-	-	4, 637	3, 973
1995 年	135	135	2463	255	5, 248	4, 088
1996 年	0	0	539	-670	868	-48
1997 年	0	0	0	-1	1, 079	-55
1998 年	0	0	0	-2	899	-52
1999 年	0	0	0	—1	1, 048	-38
2000 年	0	0	0	—1	876	-34
2001 年	0	0	0	—1	735	-326
2002 年	0	0	0	-4	1250	-29
2003 年	0	0	0	-2	569	<u> </u>
2004 年	0	0	0	—1	565	-30
2005 年	0	0	0	—1	400	0
2006 年	0	0	0	0	348	0
2007 年	0	0	0	0	418	0
2008 年	0	0	0	0	246	0
2009 年	0	0	0	0	194	0
2010 年	0	0	0	0	0	0
2011 年	0	0	0	0	0	0
2012 年	0	0	0	0	0	0
2013 年	0	0	0	0	0	0
2014 年	0	0	0	0	0	0
2015 年	0	0	0	0	0	0
2016 年	0	0	0	0	0	0
2017 年	0	0	0	0	0	0
2018 年	0	0	0	0	0	0
2019 年	0	0	0	0	0	0
2020 年	0	0	0	0	0	0
2021 年	0	0	0	0	0	0

(出典)経済産業省発表資料より作成

表 4-3 特定物質の生産量・消費量(議定書附属書 C、E)

(単位:ODP トン)

左次 (1)	在次 ⁽¹⁾ HCFC		HB	FC	ブロモク	ロロメタン	臭化,	[、] チル
平 次一	生産量	消費量	生産量	消費量	生産量	消費量	生産量	消費量
土 淮信	5, 654	5, 562					3, 376	3, 664
金牛直	(2)	(3)					(1991 年)	(1991 年)
1995 年	-	-	-	-	-	-	3, 689	4, 180
1996 年	-	4, 141	0	0	-	-	3, 009	3, 421
1997 年	-	4, 152	0	0	-	-	2, 905	3, 318
1998 年	3, 966	3, 633	0	0	-	-	2, 741	3, 112
1999 年	4, 608	3, 899	0	0	-	-	2, 420	2, 746
2000 年	3, 928	3, 531	0	0	-	-	2, 259	2, 564
2001 年	3, 792	3, 500	0	0	-	-	1, 613	1, 744
2002 年	3, 195	2, 907	0	0	0	0	1, 571	1, 702
2003 年	3, 145	2, 810	0	0	0	0	883	969
2004 年	1, 921	1, 473	0	0	0	0	897	1, 019
2005 年	1, 344	1, 118	0	0	0	0	346	357
2006 年	872	747	0	0	0	0	287	293
2007 年	728	770	0	0	0	0	282	288
2008 年	777	787	0	0	0	0	223	236
2009 年	494	518	0	0	0	0	161	167
2010 年	400	453	0	0	0	0	138	149
2011 年	397	470	0	0	0	0	128	135
2012 年	297	342	0	0	0	0	83	94
2013 年	294	335	0	0	0	0	1	1
2014 年	252	283	0	0	0	0	0	0
2015 年	213	255	0	0	0	0	0	0
2016 年	168	202	0	0	0	0	0	0
2017 年	151	178	0	0	0	0	0	0
2018 年	129	156	0	0	0	0	0	0
2019 年	164	159	0	0	0	0	0	0
2020 年	0	0	0	0	0	0	0	0
2021 年	0	0	0	0	0	0	0	0

(1) 各年は1月から12月までの値となっている。

 (2) HCFC の生産量の基準量=HCFC の 1989 年生産量算定値と消費量算定値の平均+CFC の 1989 年生産量算定値と消費量算定値の 平均×0.028

(3) HCFC 消費量の基準量=HCFC の 1989 年消費量算定値+CFC の 1989 年消費量算定値×0.028

(4) 臭化メチルの生産量等の算定値には、締約国が検疫及び出荷前の処理のために使用する量を含まない。

表 4-4 特定物質代替物質の生産量・消費量(議定書附属書 F)

(単位:GWP 千トン)

年次⑴	HF	C	HFC-23		
	生産量	消費量	生産量	消費量	
2019 年	2, 865	4, 688	6, 287	651	
2020 年	22, 503	39, 388	5, 997	981	
2021 年	26, 748	33, 341	6, 415	961	

(1) 各年は1月から12月までの値となっている。

図 4-11 特定物質代替物質の生産量・消費量 (議定書附属書 F) (出典)経済産業省発表資料より作成

(2) 冷媒フロン類の回収・破壊

既に生産され、製品中に含まれているフロン類の大気中への排出を抑制し、オゾン層保護及 び地球温暖化防止に資するため、業務用冷凍空調機器については「フロン類の使用の合理化及 び管理の適正化に関する法律(フロン排出抑制法)」、家庭用冷凍冷蔵庫・エアコンについては 「特定家庭用機器再商品化法(家電リサイクル法)」、カーエアコンについては「使用済自動車

の再資源化等に関する法律(自動車リサイクル法)」に基づき、使用済機器等から冷媒フロン類 を回収し、適切に破壊することとしている。

表 4-5 冷媒フロン類を回収した機器の台数

(単位:千台)

機器	2011 年度	2012 年度	2013 年度	2014 年度	2015 年度	2016 年度	2017 年度	2018 年度	2019 年度	2020 年度
業務用 冷凍空調機器	1,230	1,230	1,368	1,394	1,538	1,526	1,522	1,552	1,743	1,511
家庭用 エアコン	2,341	2,359	2,961	2,225	2,355	2,567	2,833	3,398	3,581	3,854
家庭用 冷蔵冷凍庫	2,843	2,919	3,433	2,775	2,799	2,829	2,982	3,354	3,597	3,709
カーエアコン	2,375	2,816	2,835	2,904	2,741	2,702	2,972	2,967	2,935	2,779
合 計	8,789	9,324	10,597	9,298	9,433	9,624	10,309	11,269	11,856	11,853

注)カーエアコンについては、自動車リサイクル法及びフロン排出抑制法による回収の合計。

表 4-6 冷媒フロン類の回収量

										(肖	単位:トン
機器	フロ ン類 の 種類	2011 年度	2012 年度	2013 年度	2014 年度	2015 年度	2016 年度	2017 年度	2018 年度	2019 年度	2020 年度
光效田	CFC	185	211	175	150	165	166	119	131	110	124
未伤用 必歯売	HCFC	2,850	3,140	2,917	2,847	3,169	3,119	2,839	2,772	2,564	2,408
(市保空 調燃界)	HFC	922	1,193	1,371	1,427	1,507	1,813	2,137	2,312	2,565	2,702
时间17党省合	計	3,958	4,543	4,463	4,424	4,841	5,097	5,094	5,215	5,239	5,235
家庭用	HCFC	1,215	1,156	1,256	1069	934	920	940	1,035	951	878
エアコ	HFC	262	322	466	508	570	700	892	1,181	1,367	1,584
ン	計	1,477	1,478	1,722	1,577	1,505	1,622	1,835	2,226	2,346	2,505
安成田	CFC	112	97	90	72	58	50	44	45	41	36
豕庭用 凶益凶	HCFC	13	12	13	10	8	7	7	6	6	5
们敞行	HFC	160	169	189	166	144	138	132	136	132	120
保単	計	285	278	291	248	210	195	183	188	172	161
+	CFC	37	21	17	14	10	6	5	4	3	2
アーエ	HFC	668	792	792	773	710	682	720	718	694	625
) _ /	計	705	813	809	787	720	689	726	722	696	627
性中	CFC	334	329	282	236	233	222	168	180	153	163
村庄	HCFC	4,078	4,308	4,186	3,926	4,111	4,046	3,786	3,813	3,521	3,291
142	小計	4,412	4,637	4,468	4,162	4,334	4,267	3,954	3,993	3,675	3,454
代替 フロン	HFC	2,012	2,476	2,818	2,874	2,931	3,333	3,881	4,347	4,758	5,031
合計		6,424	7,112	7,285	7,036	7,275	7,601	7,835	8,340	8,433	8,485

注1)小数点未満を四捨五入したため、表中の数値の和は必ずしも合計欄の値に一致しない。

注2)カーエアコンについては、自動車リサイクル法及びフロン排出抑制法による回収量の合計。

自動車リサイクル法に基づく回収量は次の計算式により算出した。

「自動車製造業者等による取引量」+「フロン類回収業者による再利用量」+「フロン類回収業者による当年度末保管量」-「フロン類回収業者による前年度末保管量」

機器	フロ ン類 の 種類	2011 年度	2012 年度	2013 年度	2014 年度	2015 年度	2016 年度	2017 年度	2018 年度	2019 年度	2020 年度
業務用	CFC	226	218	181	155	190	150	123	116	93	85
冷凍空	HCFC	2,362	2,393	2,349	2,305	2,464	2,363	2,037	1,786	1,538	1,493
調機器	HFC	1,528	1,829	1,940	2,034	2,161	2,268	2,378	2,457	2,476	2,516
カーエ アコン	計	4,116	4,440	4,470	4,494	4,815	4,781	4,538	4,357	4,108	4,099
家庭用	HCFC	1,213	1,158	1,245	716	245	239	195	189	121	46
エアコ	HFC	262	322	461	325	142	179	183	218	197	185
ン	計	1,475	1,480	1,706	1,041	388	420	382	413	336	259
宏広田	CFC	112	97	90	71	56	49	43	44	40	36
豕庭市 公蔵必	HCFC	13	12	13	10	7	6	6	5	4	3
市風印	HFC	160	169	186	108	40	49	38	34	35	29
保里	計	285	278	289	189	103	104	87	83	79	69
歴史	CFC	338	315	271	226	246	199	166	160	133	121
何足フロン	HCFC	3,588	3,563	3,607	3,031	2,716	2,608	2,238	1,980	1,663	1,542
/ 4 /	小計	3,926	3,878	3,878	3,257	2,962	2,807	2,404	2,140	1,796	1,663
代替 フロン	HFC	1,950	2,320	2,587	2,467	2,343	2,496	2,599	2,709	2,708	2,730
合計		5,876	6,199	6,465	5,724	5,305	5,303	5,003	4,849	4,504	4,393

表 4-7 冷媒フロン類の破壊量

(単位 : トン)

注1)小数点未満を四捨五入したため、表中の数値の和は必ずしも合計欄の値に一致しない。

HFC を始めとする代替フロン等4ガスの排出量については、1990 年代後半から産業部 門を中心に削減が進んできたが、特定フロン使用機器が HFC 使用機器に更新されているこ と等から冷凍空調機器の冷媒用途を中心に排出量は増加傾向にある。

平成25年には、冷凍空調機器の使用中の冷媒フロン類漏えい対策など、

フロン類のライフサイクル全般にわたる抜本的な対策を推進するため、平成25年通常国 会においてフロン回収・破壊法が改正された。これにより、法律名を「フロン類の使用の合 理化及び管理の適正化に関する法律(フロン排出抑制法)」に改め、フロン回収・破壊法に 基づく業務用冷凍空調機器の廃棄時や整備時におけるフロン類の回収及び破壊の徹底に加 え、新たに、フロン類及びフロン類使用製品の製造段階における規制、業務用冷凍空調機器 の使用段階におけるフロン類の漏えい防止対策等を講じることとされ、平成27年度から全 面施行された。

これを受けガスメーカー、機器・製品メーカー、機器ユーザー、充填回収業者、破壊業者、 再生業者、施工・メンテナンス業者等の様々な主体により、ライフサイクル全体でのフロン の排出抑制の取組が進められている。

さらに、機器廃棄時の冷媒回収率が4割程度にとどまっている状況を踏まえ、機器ユーザ ーの廃棄時のフロン類引渡義務違反に対して、直接罰を導入するなど、関係事業者の相互連 携により機器ユーザーの義務違反によるフロン類の未回収を防止し、機器廃棄時にフロン 類の回収作業が確実に行われる仕組みを構築するためのフロン排出抑制法の改正を令和元 年に実施、令和2年4月1日に施行された。 また、2021 年 10 月に閣議決定した「パリ協定に基づく成長戦略としての長期戦略」で は、代替フロン分野におけるカーボンニュートラルに向けた対策として、モントリオール議 定書キガリ改正の着実な履行、グリーン冷媒使用機器普及拡大、機器使用時の漏えいゼロを 目指したフロン類の漏えい防止、機器廃棄時の未回収冷媒ゼロを目指した冷凍空調機器か らのフロン類の回収・適正処理の方向性を示した。さらに、「地球温暖化対策計画」(令和3 年 10 月閣議決定)では、代替フロン等4ガスにつき、2030 年度において、2013 年度比 44% 減の水準(約 21.8 百万 t-CO2) にするという目標を設定し、それに向けた具体的な取組を 示している。

図 4-12 フロン排出抑制法の概要

(3) 冷媒フロン類以外のストック対策

①断熱材中フロン類の回収・破壊に向けた取組

- 家庭用冷凍冷蔵庫に使用される断熱材中のフロン類については、家電リサイクル法に 基づき、回収・破壊等がなされている。
- ・ 建材用断熱材中のフロン類については、環境省において平成12年以降回収・破壊のための技術的事項を調査し、平成19年に「建材用断熱材フロンの処理技術」をとりまとめた。

②消火剤ハロン類の回収・再利用・破壊に向けた取組

建築物や危険物施設、船舶、航空機等に設置される消火設備・機器等の消火剤として
 使用されているハロンについては、国家ハロンマネジメント戦略(2000 年)に基づ
 き、特定非営利活動法人「消防環境ネットワーク」を中心として、データベースの管
 理、不可欠用途(クリティカルユース)の十分な管理、回収・リサイクルの推進等が

行われている。

 平成18年5月には、環境省は1980年代から1990年代初頭に建設された数多くの 建築物が解体時期を迎えることに伴って回収されるハロン量の増加が予想されるこ となどを踏まえ、不要・余剰となったハロンを適切に破壊処理するための技術的事項 を調査し、「ハロン破壊処理ガイドライン」をとりまとめた。

ハロン種類	設備名	設置件数	ハロン量 (t)
ハロン-1301	消火設備	29,872	15,876
	消火装置	8,184	642
	消火器	6,480	112
	小計	44,536	16,630
ハロン-2402	消火設備	256	134
	消火装置	56	8
	消火器	99	3
	小計	411	145
ハロン-1211	消火設備	25	8
	消火装置	6	0
	消火器	511	31
	小計	542	39
合計		45,489	16,814

表 4-8 ハロン使用機器の設置状況(2021年(令和3年)12月31日現在)

(出典) ハロン等抑制対策連絡会 ハロン等抑制対策に関する報告書(令和3年度)

-		r
年度	供給量(トン)	回収量(トン)
1994	100	27
1995	117	56
1996	126	59
1997	111	46
1998	73	94
1999	57	78
2000	65	97
2001	66	104
2002	63	80
2003	52	112
2004	100	118
2005	123	133
2006	173	110
2007	208	145
2008	156	146
2009	89	99
2010	58	161
2011	46	159
2012	41	196
2013	91	217
2014	173	179
2015	192	166
2016	187	172
2017	164	236
2018	173	191
2019	170	160
2020	187	172

及459 伯扨保現不ツトンニンの自座によるハロン-1301の回収、伊	表 4-9	消防環境ネッ	トワーク	の管理によるハロン-18	01の回収、	供給量
-------------------------------------	-------	--------	------	--------------	--------	-----

(出典)ハロン等抑制対策連絡会 ハロン等抑制対策に関する報告書(令和2年度)

(4) 化学物質排出把握管理促進法に基づく排出量の把握

平成13年度からPRTR(化学物質排出移動量届出制度)が始まり、オゾン層破壊物質の 排出量等について、事業者の届出による事業場からの排出量等と、国の推計による事業場以 外からの排出量が毎年公表されている。

表 4-10 令和2年度のオゾン層破壊物質の PRTR による排出量等

men.		1 (++)
(里尔	:	kg/牛)

								(半世	. кg/++/
	物质々	两个来早	届出排	"出量"	届出外	排出量	(参考)排出量	(参考)排出量	届出
	初員石	政节留方	大気	公共用水域	排出量**	合計	(ODPトン)***	(万CO2トン)****	移動量*****
	CFC-11	288	2,849	0	748,887	751,736	751.7	357.1	0
	CFC-12	161	3,579	0	428,060	431,639	431.6	470.5	6,400
	CFC-113	284	600	0	600	1,200	1.0	0.7	0
CEC	CFC-114	163	-	-	0	0	0.0	0.0	=
CFC	CFC-115	126	-	-	0	0	0.0	0.0	-
	CFC-13	107	-	-	0	0	0.0	0.0	-
	CFC-112	263	-	=	0	0	0.0	0.0	=
	合計		7,028	0	1,177,547	1,184,575	1,184	828	6,400
	ハロン1211	380	-	-	0	0	0.0	0.0	-
	ハロン1301	382	2,070	0	8,668	10,738	107.4	7.7	0
ハロン	ハロン2402	211	-	-	0	0	0.0	0.0	-
	合計		2,070	0	8,668	10,738	107	8	0
	HCFC-21	177	8,110	0	8,110	16,220	0.6	0.0	0
	HCFC-22	104	123,225	0	1,662,225	1,785,450	98.2	323.2	4,571
	HCFC-123	164	17,929	0	86,837	104,766	2.1	0.8	1,800
	HCFC-124	105	1,400	0	1,400	2,800	0.1	0.2	0
HCFC	HCFC-133	106	11,000	0	11,000	22,000	1.3	0.0	3,100
	HCFC-141b	176	3,983	0	779,100	783,083	86.1	56.8	0
	HCFC-142b	103	7,862	0	294,572	302,434	19.7	69.9	47,000
	HCFC-225	185	123,184	0	132,655	255,839	17.9	9.2	19,367
	合計		296,692	0	2,975,899	3,272,591	226	460	75,838
四	塩化炭素	149	1,655	281	1,945	3,882	4.3	0.5	68,880
1,1,1・ト !	リクロロエタン	279	480	17,760	18,240	36,480	3.6	0.5	0
臭	化メチル	386	109,830	0	490,800	600,630	360.4	0.3	720
	合計	•	417,755	18,041	4,673,099	5,108,896	1,886	1,297	151,837

* PRTRの対象となる事業所から1年間に環境中に排出された量として、事業者から国へ届け出られた量 ** PRTRの対象となる事業所以外から環境中へ排出される量として、国が推計した量

*** ODS 排出量はモントリオール議定書の値を採用

**** CO₂ 排出量は第 4 次 IPCC 報告書(100 年 GWP 値)を採用

***** PRTR の対象となる事業所から1年間に廃棄物として事業所の外へ運び出された量

図 4-13 PRTR に基づくオゾン層破壊物質の排出量(ODP 換算)

(5) 代替フロン等4ガスの排出抑制の目標

「地球温暖化対策計画」(平成 28 年 5 月 13 日閣議決定)においては、代替フロン等 4 ガス(HFCs、PFCs、SF₆、NF₃)については、2030年において、2013年比 25.1%減(2005年比 4.5%増)の水準(約 2,890万トン-CO₂)にすることを目標としている。

表 4-11 代替フロン等 4 ガスの排出量の目標

		(甲位:日	自 「 トン・CO ₂ 換算)
	2005 年	2013 年	2030 年の
	実績	実績	排出量の目標
代替フロン等4ガス	27.7	38.6	28.9
HFCs	12.7	31.8	21.6
PFCs	8.6	3.3	4.2
SF_6	5.1	2.2	2.7
NF ₃	1.2	1.4	0.5

(出典)「地球温暖化対策計画」平成28年5月13日閣議決定

(6) ノンフロン化の推進

①グリーン購入法に基づくノンフロン化の推進

フロンを使わない製品(ノンフロン製品)の普及を促進するため、「国等による環境物品 等の調達の推進等に関する法律(グリーン購入法)」に基づき、国等の行政機関に対してノ ンフロン製品の調達を義務付けている。 表 4-12 グリーン購入法(国等による環境物品等の調達の推進等に関する法律)に基づく 環境物品等の調達の推進に関する基本方針(フロン関係抜粋)(令和4年2月現在)

ダストブロワー	 【判断の基準】 ●フロン類が使用されていないこと。ただし、可燃性の高い物質が使用されている場合にあっては、製品に、その取扱いについての適切な記載がなされていること。 (備考) ・ダストブロワーに係る判断の基準における「フロン類」とは、フロン類の使用の合理化及び管理の適正化に関する法律(平成13年法律第64号)第2条第1項に定める物質をいう。判断の基準において使用できる物質は、二酸化炭素、ジメチルエーテル及びハイドロフルオロオレフィン(HFO1234ze)等。 ・ダストブロワーに係る判断の基準については、フロン類の使用の合理化及び管理の適正化に関する法律(平成13年法律第64号)第2条第2項の指定製品の対象となる製品に適用するものとする。
電気冷蔵庫、 電気冷凍庫、 電気冷凍冷蔵庫	【判断の基準】 ●冷媒及び断熱材発泡剤にフロン類が使用されていないこと。 (備考) ・「フロン類」とは、フロン類の使用の合理化及び管理の適正化に関する法律(平成 13 年法律 第 64 号)第2条第1項に定める物質をいう。
エアコンディ ショナー	 【判断の基準】 ●冷媒に使用される物質の地球温暖化係数は 750 以下であること。 【配慮事項】 ●冷媒に可能な限り地球温暖化係数の小さい物質が使用されていること。 (備考) ・判断の基準については、経済産業省関係フロン類の使用の合理化及び管理の適正化に関する 法律施行規則(平成 27 年経済産業省内第 29 号)第3条に規定する家庭用エアコンディショナー及び店舗・事務所用エアコンディショナーのうち、平成 27 年経済産業省告示第 50 号(エアコンディショナーの製造業者等の判断の基準となるべき事項)により目標値及び目 標年度が定められる製品に適用するものとする。 ・「地球温暖化係数」とは、地球の温暖化をもたらす程度の二酸化炭素に係る当該程度に対す る比を示す数値をいう。
ガスヒートポン プ式冷暖房機	 【判断の基準】 ●冷媒にオゾン層を破壊する物質が使用されていないこと。 【配慮事項】 ●冷媒に可能な限り地球温暖化係数の小さい物質が使用されていること。 (備考) ・「地球温暖化係数」とは、地球の温暖化をもたらす程度の二酸化炭素に係る当該程度に対する 比を示す数値をいう。
ヒートポンプ式 電気給湯器	 【判断の基準】 ●冷媒にフロン類が使用されていないこと。 【配慮事項】 ●冷媒に可能な限り地球温暖化係数の小さい物質が使用されていること (備考) ・「フロン類」とは、フロン類の使用の合理化及び管理の適正化に関する法律(平成13年法律 第64号)第2条第1項に定める物質をいう。 ・「地球温暖化係数」とは、地球の温暖化をもたらす程度の二酸化炭素に係る当該程度に対す る比を示す数値をいう。 ・判断の基準は、業務用ヒートポンプ式電気給湯器については適用しないものとする。ただし、 冷媒にオゾン層を破壊する物質は使用されていないこととする。

表 4-12 グリーン購入法(国等による環境物品等の調達の推進等に関する法律)に基づく 環境物品等の調達の推進に関する基本方針(フロン関係抜粋)(令和4年2月現在)(続き)

	【判断の基準】
	①乗用車にあっては、基準値1はアを、基準値2はイを満たすこと。ただし、内燃機関を有す
	る自動車(ガソリン、軽油及び LP ガスを燃料とする車両に限る。)の場合は、併せて表1に示
	された区分の排出ガス基準(ガソリン又は LP ガスを燃料とする車両に限る。)に適合し、か
	つ、表2に示された区分ごとの燃費基準値を満たすこと。
	ア. 電動車等であること。
	イ.次世代自動車であること。
	②小型バスにあっては、基準値1はアを、基準値2はイを満たすこと。併せて、ガソリンを燃
	料とする自動車の場合は、表1に示された区分の排出ガス基準に適合すること。
	ア、次世代自動車であること。
	イ. 次世代目動車であること乂は表3に示された区分の燃費基準値を満たすこと。
	③小型貨物単にあっては、基準値1はアを、基準値2はイを満たすこと。併せて、カソリン义
	はLP カスを燃料とする自動車の場合は、表1に示された区分の排出カス基準に適合すること。
	1. 伏世代日期単じめること又は利用する燃料に対応しに衣4-1、衣4-2及び衣4-3 に二された反八の歴典其進励も満たけとし。
自動車	に小さ40に巨刀の除負基半胆を個にりこと。 のバス空になってけ、其準値1けアを、其準値9けイを凄たすこと
	ほど、ハ寺にのうては、 本中値1はノを、 本中値2は4を個にりこと。 アー か冊代白動車であること
	ノ・ひとし日勤単くのること。 イ 次世代白動車であること又は表ちに示された区分の燃費其準値を満たすこと
	「「「」」、「「「「」」」、「「」」、「」」、「」、「」、「」、「」、「」、「」
	の「アノアノテにの」では、 金平直1はアと、 金平直2は下を個にアこと。 ア 次世代自動車であること
	イ、次世代自動車であること又は表6に示された区分の燃費基準値を満たすこと。
	⑥トラクタにあっては、基準値1はアを、基準値2はイを満たすこと。
	ア.次世代自動車であること。
	イ.次世代自動車であること又は表7に示された区分の燃費基準値を満たすこと。
	【配慮事項】
	●エアコンディショナーの冷媒に使用される物質の地球温暖化係数は150以下であること。
	(備考)
	・配慮事項については、フロン類の使用の合理化及び管理の適正化に関する法律(平成 13 年
	法律第64号) 第2条第2項の指定製品の対象となる製品に適用するものとする。
	・「地球温暖化係数」とは、地球の温暖化をもたらす程度の二酸化炭素に係る当該程度に対する
	比を示す数値をいう。
	【判断の基準】
	●ウレタンフォームの発泡剤にフロン類が使用されていないこと。
マットレス	(備考)
	・「フロン類」とは、フロン類の使用の合理化及び管理の適正化に関する法律(平成 13 年法
	律第64 号)第2 条第1 項に定める物質をいう。
	【判断の基準】
断熱材	●建築物の外壁等を通しての熱の損失を防止するものであって、次の要件を満たすものとす
	・フロン類か使用されていないこと。
	(開考) 「フロン海」とは、フロン海の店田の合理ル及び答理の演正ルに開去を注急(正式 19 年注急
	第一クロク類」とは、クロク類の使用の百座化及び冒座の過止化に関する伝律(十成13 千伝律 第64 号) 第2 条第1 項に定める物質をいう

小面然八 空調機哭	【 ^{†19} 町の至半】 ●冷雄にナゾン層を破壊する物質が使用されていたいこと
ガスエンバジン	
アンエンシン	【判断の基準】
空気調和機	●冷媒にオゾン層を破壊する物質が使用されていないこと。

表 4-12 グリーン購入法(国等による環境物品等の調達の推進等に関する法律)に基づく

環境物品等。	の調達の推進に関する基本方針(フロン関係抜粋)(令和4年2月現在)(続き)
庁舎管理	【配慮事項】

	 ●庁舎管理に空気調和設備、熱源設備の維持管理を含む場合にあっては、冷媒として用いられるフロン類の漏洩の防止のための適切な措置が講じられていること。 (備考) ・「フロン類」とは、フロン類の使用の合理化及び管理の適正化に関する法律(平成13年法律)
	第64号) 第2条第1項に定める物質をいう。
加煙試験	【判断の基準】 ●加煙試験器の発煙体にフロン類が使用されていないこと。 (備考)
	・「フロン類」とは、フロン類の使用の合理化及び管理の適正化に関する法律(平成 13 年法律 第 64 号)第2条第1項に定める物質をいう。
飲料自動販売機 設置	【判断の基準】 ●冷媒及び断熱材発泡剤にフロン類が使用されていないこと。
	【配慮事項】 ●年間消費電力量及びエネルギー消費効率基準達成率並びに冷媒(種類、地球温暖化係数及び 封入量)が自動販売機本体の見やすい箇所に表示されるとともに、ウェブサイトにおいて公 表されていること。 (備考)
	 ・「フロン類」とは、フロン類の使用の合理化及び管理の適正化に関する法律(平成 13 年法 律第 64 号)第 2 条第 1 項に定める物質をいう。判断の基準において使用できる冷媒は二 酸化炭素、炭化水素及びハイドロフルオロオレフィン(HFO1234yf)等)。 ・「地球温暖化係数」とは、地球の温暖化をもたらす程度の二酸化炭素に係る当該程度に対す る比で示した数値をいう。

※本表はフロン類関係を抜き出したものであり、それ以外の判断基準がある場合がある。詳しくは「環境 物品等の調達の推進に関する基本方針 令和4年2月」を参照。

②省エネ型自然冷媒機器の導入補助

アンモニアや二酸化炭素などの自然冷媒を使用した冷凍等装置は、導入費用が高いこと 等により普及が進みにくい状況にある。このため、環境省では、このような省エネ自然冷媒 冷凍等装置の導入事業者に対して補助することにより、省エネ自然冷媒冷凍等装置の導入 を促進している。

③その他のノンフロン化普及促進の取組

環境省では、自然冷媒冷凍空調機器、ノンフロン家庭用冷凍冷蔵庫、ノンフロンダストブ ロワー、ノンフロン断熱材(硬質ウレタンフォーム)の4品目について、ノンフロン製品の 紹介冊子を作成し、その普及に取り組んでいる。

(7) 開発途上国への支援

モントリオール議定書の各締約国は、同議定書で規定された削減スケジュールに従って、 オゾン層破壊物質である CFC (クロロフルオロカーボン)、HCFC (ハイドロクロロフルオ ロカーボン)等の削減対策を行っている。2019年1月1日から発効しているキガリ改正に より HFC の削減にも各国は取り組んでいる。開発途上国の議定書の遵守状況が今後のオゾ ン層の回復に大きく影響することから、我が国はフロン類のライフサイクル全般にわたる 排出抑制対策を国際的に展開するための枠組みであるフルオロカーボン・イニシアティブ (フルオロカーボンのライフサイクルマネジメントに関するイニシアティブ、IFL)等を通

じ、フロン類の回収・破壊等についての技術協力や知見・経験の提供を行っている。

また、環境省では、モントリオール議定書多数国間基金を活用した開発途上国における二 国間協力プロジェクトを実施するため、支援方策の提案やプロジェクトの形成などを行っ ている。

表 4-12 のモントリオール議定書多数国間基金への拠出金は1期3年間であり、第 11 期 (2021~2023年)の拠出額は、新型コロナウィルスの影響により対面形式での会合が延期 されたことから、2022年7月に3年ぶりに対面開催された第5回特別締約国会合で拠出額 が確定した。

期間	拠出金総額(含繰り越し)	我が国の拠出金
第1期 1991~1993年	24,000 万ドル	3,300 万ドル
第2期 1994~1996年	51,000 万ドル	6,500 万ドル
第3期 1997~1999年	54,000 万ドル	8,500 万ドル
第4期 2000~2002年	47,570 万ドル	9,900 万ドル
第5期 2003~2005年	57,300 万ドル	10,400 万ドル
第6期 2006~2008年	47,000 万ドル	8,800 万ドル
第7期 2009~2011年	49,000 万ドル	8,073 万ドル
第8期 2012~2014年	45,000 万ドル	6,394 万ドル
第9期 2015~2017年	50,750 万ドル	6,568 万ドル
第10期2018~2020年	54,000 万ドル	7,319 万ドル
第11期2021~2023年	54,000 万ドル	6,676 万ドル

表 4-13 我が国のモントリオール議定書多数国間基金への拠出金

表 4-14 我が国の途上国支援プロジェクトの例(環境省担当)

対象国	プロジェクト名	時期	支援額	支援内容
スリランカ	アジア太平洋地域に おけるモントリオー ル議定書の遵守促進 のための多数国間基 金による戦略的計画 の実施	2001~ 2002 年	167,805 ドル (多数国間基金)	途上国自身が自立してモントリオー ル議定書を遵守するため、自国のオ ゾン層破壊物質消費状況の全体像を 把握し、すべてのオゾン層破壊物質 を撤廃するための計画である国家遵 守戦略(National Compliance Strategy)を作成することを支援。
イラン・ モンゴル	アジア太平洋地域に おけるモントリオー ル議定書の遵守促進 のための多数国間基 金による戦略的計画 の実施(第2フェー ズ)	2002~ 2003 年	141,250 ドル (多数国間基金)	上記プロジェクトの継続事業とし て、イラン及びモンゴルを対象に、 関係国際機関と協力し、調整会合の 実施等を支援。
スリランカ	国家遵守行動計画 (National Compliance Action Plan)	2005~ 2009 年	751,902 ドル (多数国間基金)	2010 年の CFC 消費量全廃のための 包括的支援。CFC の回収・再利用、 カーエアコンの改修、貿易管理、技 術者訓練等。
モンゴル	最終削減管理計画 (Terminal Phase- out Management Plan)	2005~ 2009 年	269,957 ドル (多数国間基金)	2010 年の CFC 消費量全廃のための 包括的支援。CFC の回収・再利用、 貿易管理、技術者訓練等。
インドネシ ア	フロン破壊処理施設整 備事業	2006~ 2009 年	_	セメントキルンを改修したフロン破 壊処理施設の設置、破壊実証試験 等。
アジア太平 洋地域	不要オゾン層破壊物 質破壊処理実証事業 準備	2008~ 2009 年	33,900 ドル (多数国間基金)	アジア太平洋地域での不要オゾン層 破壊物質破壊処理のロジスティッ ク、破壊処理施設の設置等のための 多数国間基金プロジェクトの準備。
モンゴル	XPS 製造工場におけ る HCFC 消費量削減 事業準備	2010~ 2011 年	67,800 ドル (多数国間基金)	モンゴル国内の2つのXPS 製造工場 における HCFC 転換のための多数国 間基金プロジェクトの準備。
モンゴル	HCFC 削減管理計画 (XPS 製造工場にお ける HCFC 消費量削 減事業)	2011~ 2018 年	130,000 146,900 ドル (多数国間基金)	モンゴルにおける HCFC 削減管理計 画のうちモンゴル国内の 2 つの XPS 製造工場における HCFC 転換。
中国	HCFC 削減管理計画 第1ステージ(冷蔵 サービス分野におけ る HCFC 削減)	2011~ 2017 年	400,000 452,2000 ドル (多数国間基金)	中国における HCFC 削減管理計画の うち冷蔵サービス分野における HCFC 削減
中国	HCFC 削減管理計画 第2ステージ(冷蔵 サービス分野におけ る HCFC 削減)	2016年 ~ 実施中	400,000 452,2000 ドル (多数国間基金)	中国における HCFC 削減管理計画の うち冷蔵サービス分野における HCFC 削減
モンゴル	HCFC 削減管理計画 第2ステージ(冷蔵 サービス分野におけ る HCFC 削減)	2020 年 ~ 実施中	170,000 192,1000 ドル (多数国間基金)	モンゴルにおける HCFC 削減管理計 画のうち冷蔵サービス分野における HCFC 削減

1-5. オゾン層保護対策の効果

(1) モントリオール議定書によるオゾン層保護の効果

オゾン層を破壊する物質に関するモントリオール議定書は、オゾン層破壊物質(ODS)の 生産・消費に関する具体的な規制措置を進め、EESC(詳細は第1部3-1(b)(P19)脚注を 参照)を減少させる効果を上げてきた。モントリオール議定書は1987年の採択以来、6回 にわたって改正・調整されてきたが、それぞれの改正・調整が EESCの減少にどのような効 果をもたらしたかを予測したものが図 4-16 である。1992年のコペンハーゲン改正以降、 EESCの長期的な減少が期待されている。*

図 4-16 モントリオール議定書の EESC の削減効果

オゾン層破壊物質の量に関する将来予測を EESC で示したもの。モントリオール議定書が採択されていないと仮定した場合(①)、モントリオール議定書採択当時(1987年)の規制に即した場合(②)及びその後の改正・調整による場合別に EESC の予測量が表されている。

(出典) Twenty Questions and Answers About the Ozone Layer: 2014 Update Scientific Assessment of Ozone Depletion: 2014 (WMO, 2015) より作成

^{*} 現時点で考えられる ODS の放出はモントリオール議定書の枠組み内で認められている途上国での ODS の生産・使用に伴う放出ならびにバンクと呼ばれる市中に存在する ODS 類(例:冷蔵設備で今なお用いられている CFC、消火設備内に存在するハロン)の放出である。仮に 2014 年時点でこれらの潜在的な ODS の放出を完全になくした場合の今後の EESC の推移は図 4-14 の破線で示す通りである。2007 年の モントリオール改正に従った場合に期待される EESC の推移はこの破線で示した推移とは明らかに異なっており、今後数十年はある程度の ODS 放出が見込まれることを意味する。なお、2014 年以降の ODS 放出を完全になくすことにより、EESC が 1980 年レベルに戻る時期を 13 年早めることが期待できる。(Q&A: WMO, 2015)

モントリオール議定書による取組みにより EESC の増加を食い止め、着実な減少へと導 いたことは、深刻なオゾン層破壊の回避に繋がった。図 4-17 は化学気候モデルによって計 算された、ODS に対する規制を行わなかった場合に予想される年平均のオゾン全量ならび にその緯度分布の変化を示したものである。ODSに対する規制が実施されたもとでの2000 年のオゾン全量(図 4-17 中の破線)と ODS に対する規制が取られなかった状況下でのオ ゾン全量の変化を比較すると、2000年時点では規制無しのシナリオでのオゾン全量の緯度 分布は規制有りのシナリオでの緯度分布に比べて、極域や低緯度域でのオゾン全量が少な いが、全体的には大きな違いは現れていない。これは、図 4-16 からもわかる通り、2000 年 の時点では規制の有無による EESC の値の差はさほど顕著でないことと矛盾しない。一方、 ODS に対する規制無しのシナリオ下でのオゾン全量の 2020 年以降の変化については、 2020 年には南極域のオゾン全量は年平均でもオゾンホールの基準である 220m atm-cm を 下回り、2040年には、北極域並びに低緯度域でも年平均のオゾン全量が 220m atm-cm 程 度になることが予測されている。さらに 2052 年の段階では、中緯度域に見られるオゾン全 量の大きな緯度勾配の特徴は消失し、また年平均のオゾン全量は全ての緯度帯において、オ ゾンホールの基準である 220m atm-cm を下回る予測となっており、深刻な影響が見込まれ ることが分かる。また、北半球中高緯度および南半球中高緯度のオゾン全量分布の経年変化 を図 4-18 に示す。南半球では、ほぼ南極を中心に 220 m atm-cm 以下の領域(黒の斜線の 部分)が拡大してゆくのに対し、北半球ではグリーンランド、スカンジナビア半島とその少 し東側の経度で先に拡大する傾向があることがわかる。

モントリオール議定書によるオゾン層破壊物質の規制がないと仮定した場合のオゾン全量の予測を緯度帯 別に平均したもの。破線は、ODS に対する規制を考慮したシナリオのもとで計算されたオゾン全量の緯度

分布。網掛けは 220m atm-cm 以下の部分。

(出典) Scientific Assessment of Ozone Depletion: 2010 (WMO, 2011) より作成

モントリオール議定書によるオゾン層破壊物質の規制がないと仮定した場合のオゾン全量の予測値の分 布を濃淡で表す。北緯 45 度~90 度の 1 月~4 月およびおよび南緯 45 度~90 度の 9 月~11 月の領域と期 間で、それぞれオゾン全量が最低値を示した日の分布を示す。濃淡のスケールの数字の単位は matm·cm。 オゾン全量が 220 matm·cm以下を示す領域を黒の斜線で示す。(出典)国立環境研究所秋吉英治氏提供デ ータ

ODS に対する規制が取られなかった状況を仮定して計算されたオゾン全量の減少は、地 上付近での太陽紫外線の増加にも大きな影響を与える。図 4-17 のシミュレーションに基づ き、北半球中緯度の正午の UV インデックスを予測したものが図 4-19 である。これによれ ば、オゾン層破壊物質の規制が行われていなかったと仮定すると、2060 年には北半球中緯 度帯の夏季の UV インデックスは現在の 2.5 倍に達すると予測されている。

中緯度域(30°-50°)における正午の状況

実線はモントリオール議定書によるオゾン層破壊物質の規制がないと仮定した場合の UV インデックスの 予測。北半球中緯度帯(北緯 30~50 度)における夏季(7 月 2 日)の正午を想定している。破線はモント リオール議定書によりオゾン層破壊物質が規制される場合の予測。UV インデックスの強度については、8 ~10 は「非常に強い」、11 以上は「極端に強い」強度とされている。

(出典) Scientific Assessment of Ozone Depletion: 2010 (WMO, 2011) 及び Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2014Assessment (UNEP-EEAP, 2015) を もとに作成

(2) モントリオール議定書による地球温暖化防止への貢献

オゾン層破壊物質である CFC は、オゾン層の破壊に関係しているだけでなく、二酸化炭 素やメタン等と同様に、温室効果ガスという性質を持つ。モントリオール議定書によるオゾ ン層破壊物質の規制は、オゾン層保護だけではなく地球温暖化の防止にも貢献してきた。図 4・20 は地球温暖化係数で重み付けした放出量を示している。モントリオール議定書が締結 された 1987 年時点の温室効果ガスとしての ODS の放出量は、二酸化炭素の量に換算する と約 9.3 億トンに相当し、当時の二酸化炭素放出量(約 21 億トン)のほぼ半分の量に相当 していた。一方、図中の網掛け部分は、モントリオール議定書の実施により、温室効果ガス として新たに放出されることを避けることが出来た ODS の量を示した部分である。2010 年現在、モントリオール議定書によって削減されたオゾン層破壊物質の放出量は、二酸化炭 素の量に換算すると、1 年あたり約 100 億トンに相当する。これは、先進国の温室効果ガス 排出量削減目標を定めた京都議定書の第一約束期間(2008~2012 年)の削減目標(二酸化 炭素換算で1 年あたり約 20 億トン)の 5~6 倍に相当する。

実線 a はオゾン層破壊物質を地球温暖化係数で重み付けして合計した世界の放出量であり、モントリオール議定書の効果により減少に転じていることが分かる。実線 b・破線 c は議定書による規制がなく、1987 年から毎年 3%増加したと仮定した場合(実線 b)と毎年 2%増加したと仮定した場合(破線 c)の放出量である。実線 d は二酸化炭素の放出量であり、2007 年までは世界の化石燃料使用量とセメント生産量から求められたものである。2007 年以降は、IPCC の排出シナリオに関する特別報告書(SRES)による二酸化炭素放出シナリオの最大を表す。破線 e は SRES シナリオのうち、最小の二酸化炭素放出量を表す。(出典) Twenty Questions and Answers About the Ozone Layer: 2014 Update

Scientific Assessment of Ozone Depletion: 2014 (WMO, 2015) より作成

(3) HFCによる地球温暖化への影響

モントリオール議定書による CFC や HCFC 等の生産規制をうけ、オゾン層を全く破壊 しない HFC が利用されている。しかし、HFC は強力な温室効果ガスであることが分かっ ており、京都議定書において削減対象となっている。図 4-21 は HFC の温暖化効果を示し たものであり、二酸化炭素に比べて温暖化係数が高いことが分かる。

二酸化炭素に換算した HFC の放出量は年あたり 8%の割合で増加しており、今後さらに 加速すると予測されている(図 4-22)。HFC の規制が行われないと仮定したシナリオによ れば、地球温暖化係数を考慮した放出量は、2050 年までに 1988 年のピーク時の CFC の 50%を超えるようになり、温室効果に対する HFC の寄与が高まることが予測され、気候変 化を通じたオゾン層への影響が考えられる。

図 4-22 地球温暖化係数で重み付けした HFC の放出量予測

地球温暖化係数で重み付けした HFC、HCFC 及び CFC の放出量を示す。各物質の放出量にそれぞれの地 球温暖化係数(直接効果のみ、評価期間 100 年で、二酸化炭素を1とする)を乗じて、二酸化炭素相当の 放出量を求めた。

(出典) Twenty Questions and Answers About the Ozone Layer: 2014 Update Scientific Assessment of Ozone Depletion: 2014 (WMO, 2015) より作成

2. WMO/UNEP 科学評価パネル報告書要旨(2018 年)

オゾン層破壊の科学アセスメント:2018 Scientific Assessment of Ozone Depletion: 2018

総括要旨

Executive Summary

オゾン層破壊の科学アセスメントは、その原稿作成と査読に貢献した世界中の多くの科 学者たちの見解を反映させることによりオゾン層破壊に関する科学的な理解の進展をまと めたものであり、モントリオール議定書締約国による意思決定のための科学的な基盤を追 加するものである。このアセスメントは、期間を延ばした観測データ、新しい化学気候モデ ルシミュレーション及び新しい解析結果に基づいている。

モントリオール議定書の下に実施された施策により、大気中のオゾン層破壊 物質の量が減少し、成層圏オゾンの回復が始まっている。

- ・モントリオール議定書により規制された長寿命のオゾン層破壊物質に起因する対流圏の 塩素と臭素の量はともに、前回のアセスメント(2014年)以降も減少を続けている(図 1(a))。今回得られた重要な根拠から、オゾン層破壊物質の減少が、以下のようなオゾン 変化傾向に大きく影響していることが示唆される。
- ・南極オゾンホールは、毎年発生しているが、回復傾向にある。モントリオール議定書による規制の結果、極域において近年発生しているものを大きく上回る顕著なオゾン層破壊はみられなくなった。
- ・極域外側(中緯度と熱帯)の上部成層圏オゾンは、2000年以降、10年あたり1~3%増加している(図2)。
- ・1997~2016年の全球(南緯 60 度~北緯 60 度)のオゾン全量には、有意な変化傾向は確認できず、前回のアセスメント以降もオゾン全量の平均は、1964~1980年(顕著なオゾン層破壊が起こる前の期間)よりおよそ2%少ない状態を保っている
- ・今世紀後半のオゾン層の変化予測は、地域によって増加あるいは減少というように複雑に なっている。オゾン全量が1980年(オゾン層破壊が顕著になる前の指標となる年)の量 に回復するのは、北半球中緯度では2030年代、南半球中緯度では今世紀半ば頃と予測さ

^{*}環境省「WMO/UNEP オゾン層破壊の科学アセスメント:2018」総括要旨の概要(仮訳)より引用

れる。南極オゾンホールは、次第に縮小し、(南極オゾンホールが発生する)春のオゾン 全量が 1980 年の量に回復するのは 2060 年代と予測される (図 1(d))。

(モントリオール議定書の)キガリ改正により、ハイドロフルオロカーボン類(HFCs)を 要因とする 2100 年における全球平均地上気温の上昇を(規制無しの場合の) 0.3~ 0.5 $^{\circ}$ から 0.1 $^{\circ}$ 以下に抑制すると予測される(図 3)。

・キガリ改正の規定による気温上昇抑制の大きさ(0.2~0.4 ℃)は、今世紀における全球
 平均地上気温の上昇を産業革命以前に比べて 2℃以下に抑えることを目的とした 2015 年のパリ協定において大きな意味合いを持つ。

CFC-11の全球での排出量が予期せず増加している(図4)。

・2 つの独立したネットワークによる観測からの推定によれば、全球の CFC-11 排出量は 2012年以降増加しており、前回アセスメント (2014年) で報告された大気中濃度の安定 した減少は鈍化している。2014~2016年の全球の濃度減少率は、2002~2012年に比べ 2/3 にとどまっている。東アジアからの CFC-11の排出量は、2012年以降増加している が、全球の排出量の増加にどれだけ寄与しているかはよくわかっていない。どの国(々) で排出量が増加しているかも特定されていない。

四塩化炭素の主要な排出源は、以前は認識されていなかったが、定量的に特定されている。

・四塩化炭素の発生源には、クロロメタン類やテトラクロロエチレンの生産過程の意図しない副産物としての排出や、塩素アルカリ過程の一過性の排出が含まれる。四塩化炭素の全球の収支は、前回アセスメント(2014年)以上によく理解されており、以前確認されていた、観測から推測される排出量と産業統計から見積もられる排出量の差は大きく減少している。

成層圏オゾンの保護のため、モントリオール議定書を継続して成功させるためには、議 定書を継続して遵守することが不可欠である。

・オゾン層の回復を早めるために可能な施策は限られているが、それは効果的な行動が既に 実施されているためである。残されている施策として、四塩化炭素やジクロロメタンなど 規制済及び未規制の物質の排出を完全になくすこと、未破壊の CFCs、ハロン及び HCFCs を回収して破壊すること、HCFCs と臭化メチルの生成を廃止することがあり、それぞれ オゾン回復に一定の効果をもたらす。二酸化炭素、メタン及び一酸化二窒素の将来の排出 は、気候と大気化学過程への影響を通して、将来のオゾン層にとって極めて重大な意味合 いを持つ。一酸化二窒素の排出の緩和によっても、オゾン回復に一定の効果をもたらす。

オゾン層破壊物質とオゾン全量の時系列

(a)等価 CFC-11 の排出量(各物質のオゾン層破壊効果を CFC-11 に換算した排出量)
(b)等価実効成層圏塩素の濃度(成層圏に達したオゾン層破壊物質(塩素と臭素)の濃度)
(c)全球の年平均オゾン全量(d)10月(春季)の南極のオゾン全量

(左図:1985~1996年の10年あたりの変化率、右図:2000~2016年の10年あたりの変化率)

(左図:HFCs の排出量シナリオ、右図:全球平均地上気温の予測) 灰色領域:モントリオール議定書のキガリ改正によるHFCs の規制が行われないシナリオ 濃い灰色線:同規制が達成できたときのシナリオ 薄い灰色線:キガリ改正以上の規制(2020年にHFCs 生産全廃)が行われた場合のシナリオ

図 4 CFC-11 の年間の排出量と生産量

2013年以降、観測から推定される排出量は、予測された排出量や過去10年平均の排出量よりも大きくなっている。

3. UNEP 環境影響評価パネル報告書要旨(2018 年)*

オゾン層破壊と気候変化との相互作用による環境影響:2018 アセスメント Environmental Effects and Interactions of Stratospheric Ozone Depletion, UV Radiation, and Climate Change: 2018 Assessment Report

総括要旨 Executive Summary

※語句・用語の統一など:「ばく露」(=「曝露」だが左記で統一。×暴露、×爆露) 「気候変化」(長期的な傾向を示す場合。短期的な変動や、条約等における正式名称で使 う場合は「気候変動」もあり得る(例:『気候変動に関する国際連合枠組条約』等)。

図1 成層圏オゾンの減少、気候変化、および環境と人の健康への影響の関連

成層圏オゾン層破壊、モントリオール議定書、および環境影響評価パネル

34 年前、南極大陸上空でこれまでにないほどオゾン層が薄くなっていることが報告された。オゾン層が薄くなることで、UV-B(波長 280-315nm の紫外線)へのばく露の増加リスクが起こり、人の健康と地球環境に大きな損害をもたらすかもしれないという懸念が生じた。これを受けて国際社会は、この地球大気の劇的な変化の原因を理解し、解決策を見出す

* 環境省による仮訳

ために結集し協力した。1985年に「オゾン層保護のためのウィーン条約」が締結され、それによって「オゾン層を破壊する物質に関するモントリオール議定書」の枠組みが規定され、 議定書は1987年に締結された。これらの国際協定で国連は、オゾン層破壊を止め、回復さ せ、それによる被害を防ぐことが根本的に重要であることを認めた。モントリオール議定書 およびその後の改正と調整によって、人為的なオゾン層破壊物質の消費と生産に関する規 制が取り決められた。モントリオール議定書締約国は、3つの評価パネルによって提供され る科学的、環境的、技術的、および経済的情報に基づいてそれぞれの国における決定を下し ている。(Box 1)。

Box1 環境影響評価パネル

環境影響評価パネルは、成層圏のオゾン層破壊のさまざまな側面を評価するためにモントリ オール議定書によって設置された3つの評価パネルの1つである。この3つのパネルは補完 的な任務を担っている。科学評価パネルは、オゾン層の破壊状況と関連する大気科学の問題を 評価する。技術経済評価パネルは、オゾン層破壊物質の代替技術に関する技術的・経済的情報 を提供する。環境影響評価パネル(EEAP)は、成層圏のオゾン層破壊の気候変動と連動した 非常に広範囲な影響の可能性を評価する。オゾン層破壊の地表紫外線への影響とそれがもた らす人の健康への影響、水域および陸上生態系への影響、生物地球化学的循環(例えば、炭素、 窒素、金属、汚染物質)への影響、大気質への影響、建設および他の用途の材料に及ぼす影響 を評価する。18 カ国 43 人の科学者が、4 年に1 度行われる 2018 年 EEAP のアセスメント に貢献した。

モントリオール議定書の実施により、成層圏オゾン層の地球規模での破壊を阻止するこ とに成功している。1990年代後半以降、成層圏ではオゾン層破壊物質の濃度が減少してい る。南極では1980年以降毎年のように、ある季節(春季)だけに顕著にオゾンの減少が起 こっているが(「オゾンホール」と呼ばれる)、2001-2013年の期間では南極の春季オゾン 全量(カラム量)が、小さいけれども統計的に有意な増加トレンドを示した。モントリオー ル議定書が完全に遵守されれば、世界平均のオゾン全量は21世紀半ばまでに1980年代以 前のレベルまで回復すると予測されている。

モントリオール議定書で規制されている化合物の多くはオゾン層破壊物質であるのみな らず強力な温室効果ガスでもある。数値モデル研究によると、モントリオール議定書がなけ れば、オゾン層破壊物質のみによる温暖化効果によって 2070 年までに地球の平均気温が 2℃以上上昇したであろうことが示されている。さらに 2016 年にモントリオール議定書の キガリ改正が採択されたことにより、オゾン層破壊物質の代替として使用される強力な温 室効果ガスであるハイドロフルオロカーボン(代替フロン)の生産と消費が制限されること になった。この改正により、モントリオール議定書の適用範囲がさらに拡大・強化され、成 層圏のオゾン層破壊に取り組むだけでなく、これまでの取り組みよりさらに大きく地球規 模の気候を保護するためにも取り組むといった効果的な国際条約が作成された。

https://www.un.org/sustainabledevelopment/sustainable-development-goals/を参照

モントリオール議定書が成功した大きな理由の1つは、それが質の高い科学に基づいて いることであり、それによってオゾン層破壊の原因とメカニズムだけでなく、大気の変化が 環境に及ぼす潜在的な影響ついての理解も深まった。環境影響評価パネル(EEAP)は、オ ゾン層破壊とそれによる紫外線の変化や、それらと地球規模の気候変化との間の相互作用 が環境に及ぼす影響に関する科学の現状についての評価を提供することを特に任務として いる(Box1)。成層圏のオゾン層破壊と気候変化との間には物理的・生物的な強い関連性が あり、モントリオール議定書が気候変化の緩和に直接的に関与することになったため、環境 影響評価パネルは変化する地球規模の気候の中でのオゾン層破壊の影響を必然的に扱うこ ととなる。

この総括要旨は、最新の EEAP4 ヶ年アセスメントからの重要な知見を示し、環境影響の 重大な社会的意義を考察する。モントリオール議定書は多様な手段で環境の持続可能性や 人の健康と福祉に貢献しているが、その多様な手段を、国連の持続可能な開発目標への貢献 及び一貫性という面からも強調した(Box 2)。

成層圏のオゾン層破壊とその環境への影響に関する詳細な情報は、国連環境計画オゾン事務局(https://ozone.unep.org)が発行した全アセスメントレポート及びその他

(Photochemical & Photobiological Sciences journal)を参照されたい。環境影響評価パネルの報告書は、成層圏オゾンの動態、紫外線、および気候変動の相互作用の影響に焦点を当

てることによって、「国連気候変動に関する政府間パネル」(https://www.ipcc.ch; ref.にま とめられている)を補完し、地球大気におけるこれらの地球規模の変化の環境への影響の包 括的な評価を提供する。

主な調査結果とハイライト

1 成層圏オゾン、気候変化、および地表での紫外線

オゾン層が破壊されると、地表での UV-B が増加する。しかし、モントリオール議定書の 成功により、成層圏のオゾン層破壊による現在の UV-B の増加は、熱帯では無視できるレベ ルであり、中緯度(30-60°)では小さく(5-10%)、極地でのみ大きくなる。今後数十年に わたって成層圏オゾンが回復すると予測されているため、晴天時 UV インデックス⁶は熱帯 以外のすべての緯度で減少し、南極大陸で最大の減少が見込まれている。ここ 10 年間と比 較した 21 世紀末の UV インデックスの新たな予測は、南極大陸で 35%減少、中緯度で 6% まで減少することが示唆されている。しかし、成層圏オゾンレベルはオゾン層破壊物質の減 少だけでなく、21 世紀の残りの期間の温室効果ガスの増加による気候変化によっても変化 するため、これらの将来予測は不確実である。

将来における全波長域紫外線の変化は、雲、エアロゾル、表面反射率の変化(例えば、積 雪や氷の被覆による)に依存する(図 2)。気候変化によって雲量が変化し、一部の地域で は曇が増し、他の地域では曇が少なくなっている。一般的に、雲量の増加は地表での紫外線 を減らす傾向があるが、影響は雲の種類によって異なる。エアロゾル(大気中に浮遊してい る個体粒子、液体粒子)は紫外線を減らしたり散乱させたりする。大気中のエアロゾルの種 類と量は、大気汚染物質の排出、火山活動、山火事や砂塵嵐の頻度と規模、そして気候変化 の影響を受ける他の多くの要因によって影響を受ける。重度に汚染された地域(例えば、南 および東アジア)では、予想される大気質の改善により、紫外線レベルが工業化前のレベル (つまり、大規模なエアロゾル汚染が発生する前に)まで上昇すると予測されており、その 変化の程度は大気汚染物質の排出の削減次第である。

積雪や氷の被覆の高い表面反射率は、反射された紫外線の一部が大気中の空気分子、エア ロゾル、および雲によって散乱されて地表に戻されるため、地表面での紫外線を増加させる ことになる。しかし、極地や山岳地帯における氷や積雪が気候変化によって減少すると、地 表からの紫外線の反射が減少するため、これらの地域における地上の紫外線が減少する可 能性がある。

⁶ UV インデックスは、特定の場所と時間における日焼けを引き起こす紫外線の強度の国際標準的な尺度。

図 2 環境への影響と人のウェルビーイングに対する潜在的影響、食料と水の安全保障、生態系 の持続可能性(実線)など、成層圏のオゾン層破壊、紫外線、気候変化との関連性と、人の行動(二 重矢印の実線)や他のプロセス(破線)によって推進される重要なフィードバック効果との関連性。

1.1 紫外線へのばく露とばく露に対する気候変化の影響

紫外線が生物(人を含む)、天然有機物、汚染物質および物質に及ぼす影響は、それらの紫 外線へのばく露に依存する(図 2)。これは、地球規模の気候変化の影響を含む、成層圏の オゾン層破壊以外のいくつかの要因によって決定される。成層圏のオゾン層破壊とは異な り、これらの気候変化による影響は、UV-Bだけでなく、UV-A(315-400 nm)および太陽 スペクトルの可視領域(400-700 nm)へのばく露も変化させる。これらの変化の重要性は、 UV-Bへのばく露によって引き起こされる多くの環境および健康への影響が、程度は様々で あるが UV-A および可視光線によっても影響を受けるためである。

人の健康にとって、行動様式は紫外線ばく露の重要な調節因子である。紫外線の個人のば く露は、人口全体平均の10分の1から10倍の大きな違いがあり、人々が屋内、屋外、も しくは日陰の下で過ごす時間に依存している。皮膚や眼のばく露は、衣服やサングラスなど の日よけ製品の使用にもよって異なる。気候変化の結果としての気温上昇や降水量の変化 は、日光ばく露に関係する人の行動を変化させると考えられるが、影響の大きさは地球レベ ルでは非常に変動しやすいと考えられる。皮膚の生物学的構造に対する紫外線量は、皮膚の 色素沈着によって影響され、より浅黒い肌は皮膚癌に対する著しい保護効果を有する。例え ば気候変化によって引き起こされる海面上昇のために、人が移動した場合(例えば、浅黒い 肌の人々が低緯度から高緯度に移動するなど)、彼らが慣れているのとは異なる紫外線条件 に遭遇することになる。

植被は多くの陸生生物に届く日光量を変化させ、遮光は建築材料の紫外線へのばく露に 影響を与える。例えば気候変化によって引き起こされる干ばつ、火災、害虫による林冠の枯 死による植被の変化は、陸生生物の紫外線へのばく露に深刻な影響を与えるだろう。さらに 植物の開花、樹木の春の萌芽、動物の出現と繁殖など、重要な生活環の季節的タイミングの 変化は、紫外線が季節とともに変化するため、紫外線へのばく露を変化させるだろう。 気候変化に対応して動植物が、極地方向に、より高い標高へ、そして湖や海のより深い所 へ移動する時、それらが適応してきた条件とは異なるかもしれない紫外線条件にさらされ る。さらに、地球温暖化の結果としての極地での氷や積雪の被覆の減少は、それまでは積雪 や氷の下にあった土壌や水域生態系の紫外線へのばく露を増加させるだろう。

水域生態系への紫外線の浸透は、水の透明度、溶存有機物の量、および氷の被覆度に依存 する。沿岸及び内水面への溶存有機物及び沈降物質の流入を増加させるような極端な気象 現象の増加は、水の透明度の低下による、水域生態系の紫外線へのばく露を減少させる。積 雪や氷の被覆の厚さや期間の減少と、湖や海洋の暖かい表層混合層の深さの地球規模の変 化は、水生生物の紫外線へのばく露を変化させている。これまでは、気候変化が混合層をよ り浅くすることで紫外線へのばく露を増加させると予想されていたが、新しいデータによ るとある地域の湖と海の混合層が深くなり、他の地域では浅くなっていることを示してい る。

これらの気候変化に起因する影響は、居住地域、季節、人種、およびその他の状況に応じ て、紫外線へのばく露を増減させる可能性がある。成層圏のオゾンと気候の継続的な変化に よって引き起こされる紫外線へのばく露と感度の変化は、人、地球上の生命および環境に影 響を及ぼす可能性があり、これにはインフラやその他の目的に使用される物質も含め、人々 の健康と福祉および生態系の持続可能性に影響を及ぼす。これらの影響のいくつかを次に 示す。これらの調査結果は、2018年の4ヶ年アセスメントに記載されているその他のもの と共に、国連の持続可能な開発目標の17のうち11に対応している。

2 紫外線へのばく露が人と環境に及ぼす影響

2.1 人の健康への影響

紫外線ばく露の増加は、皮膚がんや白内障、光線過敏症などの紫外線誘発性疾患の発生率 を高める。前世紀における皮膚癌の発生率の増加は、主に紫外線へのばく露を増加させる行 動様式の変化に起因すると思われる。これらの変化は、非制御下での成層圏オゾンの破壊に よって起こる高い紫外線ばく露に対して、人がどれほど敏感であるかを示している。皮膚癌 は、主に肌の色が白い人々が住む多くの先進国で最も一般的な癌である。例えばニュージー ランドでは、毎年約3,000人が新たに大腸癌と診断されているのに対し、新たに皮膚癌と診 断された人は9万人を超える。皮膚癌はまた、これらの国々の多くで最も医療費のかかる 癌である。米国における皮膚悪性黒色腫の推定される治療費は、2011年に約4億5,700万 ドルで、2030年には約16億ドルに増加すると予測されている。肌の色が白い人々で皮膚 悪性黒色腫を発症するリスクの60~96%は、紫外線へのばく露によるものである。2012年 に新たに発症した約168,000の黒色腫は、日光の回避から日光浴を求める生活様式の変化 の結果として、紫外線への「過剰な」ばく露(歴史上での最小ばく露を超える)に起因する と推定される。モデル研究は、モントリオール議定書の実施により、高レベルの紫外線(2065 年までに熱帯地方で40を超えるUVI)に起因する、肌の色が白い人々の皮膚癌の発生率の 大幅な増加を含む、健康への壊滅的な影響を回避したことを示している。

紫外線へのばく露は、白内障の発症に寄与し、世界的に視力障害の主な原因となっている (2015年には白内障により1,260万人が盲目に、5,260万人が視覚障害者になる)。特に低 所得国では(多くの場合紫外線が強い)白内障手術の機会が限られており、重大な健康上の 問題だけでなく、生計の喪失と経済的損失の主な原因となっている。加齢黄斑変性症の原因 として、紫外線と可視光線へのばく露の違いは不明のままである。それにもかかわらず、世 界的に高齢化している中、現在限られた治療選択肢しかない視覚障害の主要な原因である。 したがって危険因子を理解し、予防の可能性を理解することは非常に重要である。 成層圏のオゾン層破壊による高レベルの UV-B への懸念は、多くの国における日焼け防 止プログラムを開発する重要な推進力であった。これらのプログラムは、構造的および政策 レベルの介入によって支えられ、人々の行動様式の変化を促進することに焦点を当ててい る。日焼け防止プログラムは、皮膚癌の予防に非常に費用対効果が高いことが示されている。 行動変容戦略はリアルタイムの紫外線量(UVI によって提供される)に基づかなければな らず、紫外線へのばく露を低減するために衣服、帽子、日焼け止め、サングラスを使用する とともに屋外での時間を制御することを含む。公園、プール、学校などの公共の場に日陰を 設け、日焼け止めを入手する機会を改善することで、行動様式の変化を促進することができ る。

紫外線へのばく露は人の健康に有益でもある。例えば皮膚が紫外線にばく露するとビタ ミン D が生成され、世界中の多くの人々のビタミンの主要な供給源となっている。ビタミ ン D は健康な骨、特に乳児期や小児期において重要である。また、紫外線ばく露でビタミ ン D およびビタミンDと無関係な経路で健康上のさまざまな便益が得られることを示すエ ビデンスも増えている。例えば、全身性自己免疫疾患(多発性硬化症など)への効果、近視 の予防、癌以外の疾患による死亡率低下などである。最近の研究によると、死亡率の低下に よる恩恵は確実であるとされている。

我々の知識不足、特に、年齢、性別、肌の種類、および場所によって異なる可能性がある ため、リスクと利益のバランス維持に必要な紫外線量の計算を妨げている。予測される気候 の変化が、さまざまな地域に住む人々のリスクと利益のバランスを変化させるであろう。例 えば、ビタミン D 欠乏症のリスクが既に相当なものであることが知られている高緯度で、 UV-B の低減はビタミン D 欠乏症のリスクを増大させるであろう。逆に気温の上昇は、寒 冷地の人々に屋外で過ごす時間を増やし、UV-B だけでなく、あらゆる波長の日射にさらさ れるようになり、皮膚癌や白内障に関連するリスクを増大させる。

Box 3「回避された世界危機」における環境への影響

このアセスメントは、モントリオール議定書とその改正の効果的な実施により発生し、また、 発生が予測されている成層圏オゾンの変化による環境影響に焦点を当てている。現在のとこ ろ、関連する研究が不足しているため、成層圏オゾン層がモントリオール議定書によって保護 されていなかった場合に生じたであろう健康および環境への影響を十分に評価することがで きない。しかし、この「回避された世界危機」に関しては、モントリオール議定書が成功裡に 実施されたための効果であることを提供することは注目に値する。

いくつかのモデル研究は、モントリオール議定書がなかった場合、すなわち「回避された世界 危機」のシナリオで成層圏オゾン層の変化について報告している。いずれも、成層圏オゾンの 減少が進行していることを示しており、それは時間の経過とともに加速し、今世紀後半までに 地球全体に影響を及ぼしたとしている。この地球規模の成層圏オゾンの崩壊は、現在の極値で ある 25 を超える UV インデックスが地球のほぼすべての居住地域で一般的になり、熱帯地方 では 40 という高い値になり、WHO が現在「極値」と考えている UV インデックスのほぼ 5 倍となる。以下の図は、予測された UV インデックス(UVI;左)と「回避された世界危機」 (右)のそれとの比較である。

これらの成層圏オゾンと紫外線のモデルを、過度な紫外線ばく露と皮膚癌のリスクとの関連 性の理解と組み合わせることで、「回避された世界危機」における皮膚癌の発生率の定量的推 定が可能となった。様々な時間尺度および地域を考慮した多くの研究がおこなわれ、モントリ オール議定書の実施の成功により何百万人もの皮膚癌発症が予防されている。例えば米国環 境保護庁による報告書は、モントリオール議定書により、米国だけで2億5000万件を超える 皮膚癌を回避したとしている。また同報告書は、モントリオール議定書がアメリカでの白内障 を4500万件以上予防したと推定している。しかしながら、モントリオール議定書が成功裡に 実施されたことによる人と環境へのあらゆる有益な効果を定量的に評価するには、現時点で は我々の知識は依然として不十分である。

2.2 大気質への影響

紫外線は、放出された多くの化合物の光化学反応を促進し、地表付近のオゾンや粒子状汚 染物質などの二次汚染物質を発生させる。将来の成層圏オゾンの回復と気候によって、紫外 線の減少や成層圏オゾンの下方輸送の増加が起こり、それが地表付近のオゾンを変化させ、 人の健康と環境に重大な影響を及ぼす可能性がある。数値モデル研究によって、米国では、 成層圏オゾンの回復による紫外線の減少は、一部の都市部においては地表付近のオゾンの 減少につながるが、それ以外の地域においてはわずかなオゾンの増加をもたらすであろう ということが示された。

紫外線と気候の変化は大気質に影響を与え、人の健康に大きな影響を与える可能性があ る。最近の多くの国際的なアセスメントは、劣悪な大気質は世界的に重大な健康問題であり、 世界的に環境要因による最大の死亡原因と推定されると結論した。例えば微粒子状物質 (PM2.5)にさらされて2015年には420万人が死亡した。多くの人々はすでに劣悪な大気 質の影響を受けているため、紫外線の比較的小さな変化でさえ人々の健康に重大な影響を 及ぼす可能性がある。

2.3 農業と食料生産への影響

紫外線の若干の増加が、作物収量と植物生産性に実質的に悪影響を及ぼすことを示唆す る証拠はほとんどない。モントリオール議定書が存在せず、紫外線が大幅に増加した場合、 食糧生産量がどのような影響を受けるのかは不明である。ある分析は、成層圏オゾン層の破 壊が最も顕著な地域(高緯度)で行われた多くの実地調査のデータに基づき、成層圏オゾン の10%の減少に相当する紫外線の20%の増加でも、植物生産量は6%しか減少しないと結 論づけた(すなわち、紫外線3%増加ごとに1%の成長減少)。この関係が現在の2倍を超 える紫外線レベル(すなわち、「回避された世界」シナリオ(Box3))に対してどの程度成 り立つかは不確実であり、重要な知識の欠落であることを表している。

モントリオール議定書は、地球温暖化を増大させるオゾン層破壊物質とそのいくつかの

代替物質の廃止による気候変化の緩和に貢献することで、気温の上昇、干ばつ、極端な天候 への農作物の脆弱性を軽減したと考えられる。現在、南半球でのオゾン層破壊がこの地域の 大気循環パターンを変化させており、それが気象条件、海面水温、海流、山火事の頻度に影 響を与えていることが明らかになっている。地域規模では、成層圏のオゾン層の破壊と気候 変化に起因する南半球の降雨量増加は、南アメリカの農業生産性の増加と関連している (Box 4)。しかしながら、成層圏オゾンの「穴」が回復するにつれて、これらの有益な効果 は逆戻りするかもしれない。北半球でも同様の、小規模ではあるが、成層圏のオゾン層破壊 が気候に及ぼす影響が生じている可能性があるが、これらの変化を環境の影響に結び付け る報告はまだない。

干ばつ、高温、二酸化炭素濃度の上昇などの気候変化要因は、紫外線が作物に及ぼす影響 を変化させる可能性があるが、影響は複雑で多くの場合生育条件に左右される。場合によっ ては、これらの要因が紫外線に対する感受性を高める可能性がある(例えば、二酸化炭素の 増加はトウモロコシの紫外線に対する防御機構を弱める可能性がある。)その他の場合では、 紫外線へのばく露は作物の干ばつ耐性を高めるなど、気候変化の影響を変化させる可能性 がある。成層圏オゾンの回復による紫外線の減少は、農村部の地表レベルのオゾンの増加に つながり、作物の収穫量に悪影響を及ぼす可能性がある。これらの、そして他の紫外線と気 候変化の相互作用を理解することは、環境変化の進行に直面しながら作物収穫量を維持す るための適切な農業の実践に関して生産者や畜産家に情報を提供することができる。

紫外線は植物に有益な影響をも与える可能性があり、これらの影響は植物の成長と発達 を調節するように作用する特異的な光受容体によって媒介されることが多い。これらの有 害ではない効果には、食物の栄養価の変化や害虫や病原体に対する植物の抵抗性の変化に つながる植物化学の変化が含まれる。その結果、成層圏のオゾンや気候の変化、あるいは農 業実践の変化(例えば、植栽日や播種密度)の結果としての紫外線ばく露の減少は、植物防 御機構を低下させ、収量に対する直接的な影響以外の点で食料安全保障に影響を与える可 能性がある。ある種の農作物では、植物の耐寒性、食品の品質、および害虫に対する抵抗性 を操作するために紫外線がますます利用されるようになっている。

2.4 水質と漁業への影響

紫外線へのばく露量と混合層深度の変化は、水域生態系の基本構造を変化させ、その結果、 その生態系は(例えば、水質や漁業生産性など)をその地域特有の方法でその役割を果たし ている。商業的に重要な仔魚の多くの体は透明で、紫外線によって誘発される損傷に敏感で ある。この影響の受けやすさは、表層水中の稚魚の分布と紫外線への高いばく露と相まって、 1年魚の生存率を低下させ、成魚の漁業を低下させる可能性がある。対照的に、澄んだ湖の 透明度の低下は、在来種に悪影響を及ぼす可能性のある紫外線に敏感な温水魚の侵入の可 能性を高める可能性がある。

気候変化に伴う豪雨や氷河や永久凍土の融解は、紫外線を吸収する溶存有機物と懸濁物質 の濃度と色調を増加させている。このことは、多くの陸水および沿岸水域の「褐変」につな がり、その結果、紫外線が表層水の寄生虫や病原体が生息する表層水を消毒する貴重な生態 系の役割の喪失につながる。干ばつの頻度と期間の地域ごとの増加は、水の透明度を高め、 太陽の消毒効果の低下をもたらし、魚に重要な餌料であるプランクトンの分布深度を変化 させるという逆の効果をもたらす。

2.5 生物地球化学的循環、気候システムのフィードバック、および生物多様性への影響

成層圏のオゾンと気候の変化は、太陽光、ひいては温室効果ガスと水質によって引き起こ される生物地球化学的循環に影響を与える。太陽紫外線や可視光線へのばく露は、天然有機 物(NOM、例えば、陸生植物のリター(落葉落枝)、水生生物のデトリタス(有機堆積物、)、 溶存有機物)の分解、および汚染物質の変化を促進しうる。NOMの光分解は二酸化炭素や 亜酸化窒素を含む温室効果ガスの放出をもたらす。気候変化による干ばつ、山火事、永久凍 土の融解の増加は、光分解を増加させる可能性があり、それによって、地球温暖化における 正のフィードバックを促進する。しかし、この影響の規模に関しては、依然として重要な知 識が欠落している。

水生と陸生生物の種は紫外線に対する耐性が異なり、これらの違いは上昇した紫外線の 条件下で生物の群集の構成や多様性の変化につながる可能性がある。紫外線はまた、草食動 物の食性と捕食者・被食者の相互作用を変化させ、それが生態系における栄養相互作用、エ ネルギー移動、食物網を変化させる。現在、南半球におけるオゾンによって引き起こされる 地域気候の変化は、南極のコケ類や他の植物群落と同様に、南アメリカのアルティプラーノ の独特な高地森林帯で生息する多くの種の生息地と生存を脅かしているが、一部の海鳥や 海獣の繁殖成功を高めている(Box 4)。モントリオール議定書が生態系の生物多様性の維持 にどの程度貢献しているかは不明だが、水域生態系における種の多様性の喪失は紫外線へ の高ばく露に関連していることが知られており、生態系の健康と安定性、そしてそれらが人 に提供する利益の低下を引き起こす可能性がある。

2.6 汚染物質および材料への影響

気候や成層圏オゾンの変化と組み合わさった環境への汚染物質の放出の増加は、人の健 康や陸上および水域生態系に影響を与える。紫外線は、汚染物質の生物地球化学的循環と直 接的および間接的な光反応による分解に影響を与える重要な因子の1つである。しかし、 豪雨や干ばつなどの気候変化の影響も、紫外線へのばく露を増減させることによって、汚染 物質の光分解に大きな影響を与える。さらに、着色された溶存有機物の流出量の増減は、水 域生態系における直接光反応と間接光反応のバランスに影響を与える。これらの気候変化 の影響は地域の状況に依存しており、人の健康と環境に対する汚染物質の影響の予測と管 理には課題が残る。

UV-Bへのばく露は、汚染物質の毒性を変化させる上で重要な役割を果たす。紫外線にさらされると、魚類や両生類などの水生生物に対する農薬や多環芳香族炭化水素(PAH)などの汚染物質の毒性が高まる。逆に、UV-Bへのばく露は最も毒性の強い形のメチル水銀をより毒性の低い形に変え、魚への水銀の蓄積を減少させる。しかしながら、ノルウェー南部などの一部地域の内水面では、溶存有機物の長期的な増加により、水中の紫外線ばく露が減少する。このことは、水の紫外線透過性低下の結果として起こりうる、既に観察されている、魚のメチル水銀の増加に寄与しているかもしれない。紫外線は、多くの有機汚染物質や水系病原体の分解にも大きな役割を果たしている。紫外線による光分解の過程は、成層圏オゾンの変化の影響を受ける可能性があるが、溶存有機物のような他の要因は水中の紫外線の調節に重要であり、光分解により大きな影響を与える。モデル化手法の進歩により、水質汚染物質の行方に対する地球規模の変化の影響の定量化が改善されつつある。

日焼け止めは、日焼け防止の一連のアプローチの一つとして、化粧品を含めて広く使用さ れている。しかし、日焼け止めが沿岸水域に流れ込み、水域生態系に影響を与える可能性が あることが現在では認識されている。人工日焼け止めのサンゴ、ウニ、魚、および他の水生 生物への毒性は、米国ハワイ州で一部の日焼け止めの使用を禁止する法律を可決させ、欧州 連合も同様の法律を検討するに至っている。 マイクロプラスチック(5mm以下のプラスチック粒子)は今や世界の海に遍在しており、 多くの生物がそれを摂取することが知られ、海洋生態系に深刻な脅威をもたらしている。マ イクロプラスチックは、紫外線によるプラスチック製品の劣化と分解、および太陽光にさら されたゴミによって形成されている。マイクロプラスチック汚染物質は、世界で食用として 販売されている魚の最大 20%以上に含まれている。マイクロプラスチックやより小さいナ ノプラスチックの毒性は不明であるが、高い温度と紫外線がプラスチックの細分化を加速 させ、潜在的に食料安全保障を脅かしている。

紫外線にさらされると、有機材料の機能的統合性が損なわれ、日常的に露出しているプラ スチックや木材など、建築に使用される屋根やパイプラインの耐用年数を短くする。ごく最 近まで、包装や建築に使用されるプラスチックは、耐久性や性能を念頭に選択され最適化さ れていた。しかし、持続可能性の向上、例えば「グリーンビルディング」への傾向が現在重 要視されていることから、環境的にも受け入れられるような選択が求められている。これに は、必要に応じてプラスチックに替わって、再生可能で、カーボンニュートラルで内包エネ ルギーの少ない木材の使用の増加が含まれる。これらの材料のいくつかは、紫外線にさらさ れると老化を促進される危険性がある。現在は、プラスチック材料および木材塗料用の新し く、より安全で、効果的で、そしてより環境に優しい添加剤(着色剤、可塑剤、および安定 剤)を特定し、開発する努力が進められている。気候変化のために予測される、より厳しい 気候は、この分野においてさらに多くの努力が求められるであろう。

モントリオール議定書で規制されているトリフルオロ酢酸(TFA)は、天然にも商業的に も生産されている。環境中にトリフルオロ酢酸(TFA)を放出する複数の人為的発生源があ る。モントリオール議定書に関連する情報源には、CFCの代替物質であるHCFC、HFC、 およびHFOが含まれる。これらの化学物質は大気中でTFAに分解することが知られてい るが(図3; Box5)、表層水中のTFA濃度のわずかな増加に寄与しているにすぎない。これ が、人や環境に危険をもたらすことは予想されていない。

図3大気中のHFCとHFOから生成されるトリフルオロ酢酸(TFA)は大気中で大気から急速 に水に分離される。それは土壌や表層水の陽イオンと結合し、吸水性の水域(塩湖)や海に蓄積 する。(出典)Hongjie (2016)より許可を得て変更

Box 5 オゾン層破壊物質の代替品による環境影響

クロロフルオロカーボン(CFC)の利点の1つは、それらが下層大気では不活性であり、大気質に直接影響を与えないことだ。それらの代替品は特に安定性の低いことが選択されており、これらの化合物はモントリオール議定書の履行に直接関係しているので、大気および環境の質への影響を考慮する必要がある。冷却に焦点を当てたこれらの代替品には、ハイドロフルオロカーボン(HFC)およびハイドロフルオロオレフィン(HFO)、炭化水素およびアンモニアが含まれる。

HFC と HFO

トリフルオロ酢酸(TFA)は、大気中のHCFC、HFC、およびHFOから生成される難分解 性物質である。環境中には他にも多くのTFAの発生源があるが、それらは規制されていない ため、地球規模の生産および環境への放出に関するデータは事実上存在しない。HFCは大気 中でゆっくりと分解し(1~100年)、世界的に分布するようになる。対照的に、HFO-1234yf は急速に(数日-数週間)TFAに分解する。その結果、HFO-1234yfが放出された近くで分解 が起こる。このため、表層水中のTFA濃度はHFCsよりも局所的に高くなる可能性がある。 それでも、これらの局所的なTFAの堆積が、特に海で最終的な希釈が起こった場合に、環境 へのリスクをもたらすことを示唆するエビデンスは今の所ない。

中国、アメリカ、ヨーロッパでの TFA 生産量の推定値は、希釈がないと仮定すると、ミクロ コズム研究による TFA-ナトリウムの慢性的な「無影響濃度」(NOEC)である 1000 万 ng/L より数桁低い。

全体的に見て、表層水中のTFA ナトリウムの現在および予測された濃度へのばく露が、人の 健康および環境へのリスクは極めて小さいという我々の以前のアセスメントの結論と矛盾す る新しいエビデンスはない。最近のこれに関するレビューは同様の結論に達した。

炭化水素

ODS 代替物質として使用される炭化水素(プロパンや n·ブタンなど)の放出は、大気中の炭 化水素の負荷を増大させ、潜在的に地上レベルのオゾン濃度を増加させる可能性がある。炭化 水素冷媒の排出が大気質に及ぼす影響についての推定は学術論文ではほとんどない。米国内 の3 都市を対象とした一つの最近の評価では、現在の不確実性が浮き彫りになり、対流圏オ ゾンの「最悪の場合」の増加量は約13 µg/m³だが、現実的な推定値は0.3 µg/m³とした。こ れらの数値は、120 µg/m³を超えている現在の年間最大対流圏オゾン濃度と比較される。

アンモニア

大気中のアンモニアはいくつかの化合物と反応しエアロゾルを生成し、それにより粒子状大 気汚染物質(PM2.5)の濃度を上昇させる。しかし、現在排出されている CFC、HCFC、およ び HFC のすべてをアンモニアで完全に代替することは(年間 170,000 トンと推定:G. Velders、私信、2018年2月、農業(34,500,000 トン)から、あるいは産業および居住活動 (8,500,000 トン)からの推定年間アンモニア排出と比較して少ない。

3 結論と知識の欠落

モントリオール議定書は、地球規模の成層圏オゾン層破壊とその結果引き起こされる UV-B の大幅な増加を防止することで、人の健康と環境への重大な悪影響を防止している (Box 3)。

私たちは、モントリオール議定書が成層圏のオゾン層破壊の抑制に成功したために回避さ れてきた人の健康と環境への影響についての定性的予測に自信を持っている。しかしなが ら、モントリオール議定書の成功から得られる多くの利益の定量化は依然として大きな課 題であり、気候変化と人の適応の程度を考慮すると、紫外線ばく露における将来の傾向は不 確実なままである。 最近報告された CFC-11 排出量の予想外の増加は、成層圏のオゾン層破壊への影響は少な く、したがって人の健康または環境への影響も小さいと予想されている。しかし、そのよう な予期せぬ排出量が将来も継続して増加し、または新たな脅威が発生した場合、人の健康お よび環境への影響は相当なものになる可能性がある。新たな脅威としては、温室効果ガスに よる温暖化防止のために提案された「地球工学」活動が含まれる可能性があり、地表に到達 する紫外線に影響を及ぼす可能性がある。特に、硫酸エアロゾルを成層圏に注入して地表面 の日射を減少させるという提案は、成層圏オゾンと紫外線に対して重要な副作用をもたら す可能性が高い。大量の ODS が大気中に残っていれば、硫酸エアロゾルは成層圏のオゾン 損失を加速させる可能性がある。オゾンによる吸収と硫酸塩による散乱の複合的な変化は、 紫外線の地上レベルへの透過に対してスペクトル的に複雑な結果を及ぼし、直接紫外線と 拡散紫外線の比率は系統的に大きくなる。

将来の成層圏オゾンの変化による環境への影響の定量化の改善という課題に対処するには、 現在の知識におけるいくつかの大きな欠落に対処する必要がある。第一に、多様な生物の基 本的な反応を変化させる上で、紫外線の異なる波長の相対的有効性(つまり、生物学的スペ クトル重み係数)をより良く理解する必要がある。これにより、より一般的な日射よりも、 特に UV-B(したがって成層圏のオゾン層破壊に関連する)に対するばく露の変化をより適 切に特定することが可能となる。第二に、人の健康と環境への広範な影響にまたがる用量-反応関係のより良い理解が必要である。まとめると、これらは成層圏オゾン層破壊や気候変 化が生物とその生態系、そしてプラスチック、木材構造、衣服などの材料に及ぼす影響のス ケーリングやモデリングの改善を支援するだろう。

地理的範囲の変化(気候変化によって引き起こされる人や他の種の移動を含む)および気候 変化による生活環の季節的タイミング変化の結果として、人を含む多くの生物が、紫外線と 他の環境要因との異なる相互作用的な組み合わせを経験することは明らかである。これら の環境変化は、コミュニティ構造の変化とともに起こり、成長、繁殖、そして生存に間接的 な影響を及ぼすだろう。同時に複数の要因からなる環境変化を背景とした紫外線の変化に 対して、人と生態系がどのように反応するかは、依然として大きな知識の欠落である。これ らの影響を定量化することは極めて困難であり、その結果の多くは予測が困難な人の行動 様式や社会的反応に左右される。

紫外線への高いばく露に関する懸念の焦点は、歴史的に人の健康に当てられてきた。人の福 利のための重要な、「生態系サービス」を提供する上での陸域および水域生態系の重要性に 加えて、環境の持続可能性と生物多様性の維持は健全な惑星を維持するために極めて重要 である。環境影響評価パネルの扱うテーマは、我々の生活する惑星の複雑さと相互関連性の 一部を包含しているが、モントリオール議定書の成功は複雑な環境問題に対して、世界が団 結し、そして成功裡に行動することが可能であることを実証している。

4. 参考文献

環境省. 2009. 化学物質ファクトシート (2012年度版).

http://www.env.go.jp/chemi/communication/factsheet.html

- 環境省. 2015. 紫外線環境保健マニュアル.
- 環境省. 2006. 平成 17 年度フロン等オゾン層影響微量ガス監視調査.
- 環境省. 2018. 平成 29 年度フロン等オゾン層影響微量ガス等監視調査.
- 気象庁. 1993-2011. オゾン層観測報告.
- 気象庁. 2012-2020. オゾン層・紫外線の年のまとめ.
- 気象庁. 2002. 大気・海洋環境観測報告(2000年観測成果). 157p.
- 国立環境研究所. 2011. 10. 3. 2011 年春季北極上空で観測史上最大のオゾンが破壊―北 極上空のオゾン破壊が観測史上初めて南極オゾンホールに匹敵する規模に― (プレスリ リース).

http://www.nies.go.jp/whatsnew/2011/20111003/20111003.html

池鯉鮒悟.2012.国内の日射量変化について.Journal of JSES vol38.No.5

永島達也、高橋正明. 2002. 成層圏オゾン層の将来見通し-化学気候モデルを用いた評価. 天気 49 巻 11 号:937-944.

ハロン等抑制対策連絡会. 2012. ハロン等抑制対策に関する報告書(平成 23 年度).

- Anstey, J.A., Osprey, S.M., Alexander, J., Baldwin, M.P., Butchart, N., Gray, L., Kawatani, Y., Newman, P.A., and Richter, J.H. (2022). Impacts, processes and projections of the quasi-biennial oscillation. Nat Rev Earth Environ. DOI: 10.1038/s43017-022-00323-7
- Bègue, N., D. Vignelles, G. Berthet, T. Portafaix, G. Payen, F. Jégou, H. Benchérif, J. Jumelet, J.P. Vernier, T. Lurton, J.-B. Renard, L. Clarisse, V. Duverger, F. Posny, J.-M. Metzger, and S. Godin-Beekmann, 2017. Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015 Calbuco eruption, Atmospheric Chemistry and Physics., 17, 15019–15036, doi:10.5194/acp-17-15019-2017.
- Bloom AA, Lee-Taylor J, Madronich S, Messenger DJ, Palmer PI, Reay DS, McLeod AR. 2010. Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage. The New Phytologist 187:417-425.

CGER. 2007. CGER's supercomputer activity report vol14-2005. 154 p.

- Chipperfield MP, Feng W. 2003. Comment on: Stratospheric ozone depletion at northern mid-latitudes in the 21st century: The importance of future concentrations of greenhouse gases nitrous oxide and methane. Geophysical Research Letters 30 (7), 1389:3p. doi:10.1029/2002GL016353.
- Corr CA, Krotkov N, Madronich S, Slusser JR, Holben B, Gao W, Flynn J, Lefer B, Kreidenweis SM. 2009. Retrieval of aerosol single scattering albedo at ultraviolet wavelengths at the T1 site during MILAGRO. Atmospheric Chemistry and Physics 9:5813-5827.
- De Laat, A. T. J., van der A, R. J., Allaart, M. A. F., van Weele, M., Benitez, G. C., Casiccia, C., Paes Leme, N. M., Quel, E., Salvador, J., & Wolfram, E. (2010). Extreme sunbathing: Three weeks of small total O₃ columns and high UV radiation over the

southern tip of South America during the 2009 Antarctic O₃ hole season. *Geophysical Research Letters*, 37, L14805. doi:10.1029/2010GL043699

- Engel A, Möbius M, Bönisch H, Schmidt U, Heinz R, Levin I, Atlas E, Aoki S, Nakazawa T, Sugawara S, Moore F, Hurst D, Elkins J, Schauffler S, Andrews A, Boering K. 2009. Age of stratospheric air unchanged within uncertainties over the past 30 years. Nature Geoscience 2:28-31.
- Estupinan G, Raman S, Crescenti GH, Streicher JJ, Barnard WF. 1996. Effects of clouds and haze on UV-B radiation. Journal of Geophysical Research 101:16807-16816.
- Ferretti DF, Miller JB, White JWC, Lassey KR, Lowe DC, Etheridge DM. 2007. Stable isotopes provide revised global limits of aerobic methane emissions from plants. Atmospheric Chemistry and Physics 7:237-241.
- Hadjinicolaou P, Pyle JA, Harris NRP. 2005. The recent turnaround in stratospheric ozone over northern middle latitudes: A dynamical modeling perspective. Geophysical Research Letters 32:12821. doi:10.1029/2005GL022476.
- Hayashi LC, Hayashi S, Yamaoka K, Tamiya N, Chikuda M, Yano E. 2003. Ultraviolet B exposure and type of lens opacity in ophthalmic patients in Japan. Science of the Total Environment 302:53-62.
- Hofzumahaus A, Rohrer F, Lu KD, Bohn B, Brauers T, Chang CC, Fuchs H, Holland F, Kita K, Kondo Y, Li X, Lou SR, Shao M, Zeng LM, Wahner A, Zhang YH. 2009. Amplified trace gas removal in the troposphere. Science 324:1702-1704.
- Hongjie H, 2016, Typical Photovoltaic Backsheet Failure Mode Analysis and Comparison Study with Accelerated Aging Tests. DuPont report, DuPont China R&D Center, Shanghai, China Report
- Hurwitz MM, Newman PA, Garfinkel CI. 2011. The Arctic vortex in March 2011: a dynamical perspective, Atmospheric Chemistry and Physics 11:22113–22127.
- Keppler F, Hamilton JTG, Brass M, Rockmann T. 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187-191.
- Kudo R, Uchiyama A, Ijima O, Ohkawara N, and Ohta S. 2012. Aerosol impact on the brightening in Japan. Journal of Geophysical Research, vol.117,do7208, doi:10.1029/2011jd017158
- Lelieveld J, Butler TM, Crowley JN, Dillon TJ, Fischer H, Ganzeveld L, Harder H, Lawrence MG, Martinez M, Taraborrelli D, Williams J. 2008. Atmospheric oxidation capacity sustained by a tropical forest. Nature 452:737-740.
- Manney GL, Santee ML, Rex M, Livesey NJ, Pitts MC, Veefkind P, Nash ER, Wohltmann I, Lehmann R, Froidevaux L, Poole L R, Schoeberl MR, Haffner DP, Davies J, Dorokhov V, Gernandt H, Johnson B, Kivi R, Kyrö E, Larsen N, Levelt PF, Makshtas A, McElroy CT, Nakajima H, Parrondo MC, Tarasick DW, von der Gathen P, Walker KA, Zinoviev NS. 2011. Unprecedented Arctic ozone loss in 2011 echoed the Antarctic ozone hole. Nature 478:469-475.
- Matsunaga SN, Guenther AB, Potosnak MJ, Apel EC. 2008. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation. Atmospheric Chemistry and Physics 8:7367-7371.
- Messenger DJ, McLeod AR, Fry SC. 2009. The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant, Cell and Environment 32:1-9.

Miyagawa K, Sasaki T, Nakane H, Petropavlovskikh I, Evans RD. 2009. Reevaluation

of long-term Umkehr data and ozone profiles at Japanese stations. Journal of Geophysical Research 114.D07108. doi:10.1029/2008JD010658.

- Muto J, Kuroda K et al. 2007. Accumulation of elafin in actinic elastosis of sun-damaged skin: Elafin binds to elastin and prevents elastolytic degradation. Journal Invest Dermatol 127:1358-1366,
- Neale PJ, Kieber DJ. 2000. Assessing biological and chemical effects of UV in the marine environment: Spectral weighting function. In Hester, R.E. & Harrison, R.M (Eds.), Causes and Environmental Implications of Increased UV-B radiation (61-83). Cambridge: Royal society of Chemistry. 61-84.
- Newman, P. A., J. S. Daniel, D. W. Waugh and E. R. Nash 2007. A new formulation of equivalent effective stratospheric chlorine (EESC), Atmospheric Chemistry and Physics., 7, 4537-4552, doi: 10.5194/acp-7 -4537-2007.
- NOAA. 2005. Northern hemisphere winter summary 2004-2005. http://www.cpc.ncep.noaa.gov/products/stratosphere/winter_bulletins/nh_04-05/index.html
- Pageon H, Zucchi H, et al. 2015. Biological effects induced by specific advanced glycation end products in the reconstructed skin model of aging. BioRes Open Access 4:54-64,
- Plumb, R. A., and R. C. Bell 1982. A model of the quasi-biennial oscillation on an equatorial beta-plane, Quarterly Journal of the Royal Meteorological Society., 108, 335-352.
- Polvani LM, Waugh DW, Correa GJP, Son SW. 2011. Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere. Journal of Climate 24:795-812.
- Raivonen M, Bonn B, Sanz MJ, Vesala T, Kulmala M, Hari P. 2006. UV-induced NOy emissions from Scots pine: Could they originate from photolysis of deposited HNO3? Atmospheric Environment 40:6201-6213.
- Raivonen M, Vesala T, Pirjola L, Altimir N, Kerone P, Kulmara M, Hari P. 2009. Compensation point of NOx exchange: Net result of NOx consumption and production. Agricultural and Forest Meteorology 149:1073-1081.
- Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous Oxide (N₂O): the dominant ozone-depleting substance emitted in the 21st Century. Science 326:123-125.
- Reinsel GC, Weatherhead EC, Tiao GC, Miller AJ, Nagatani RM, Wuebbles DJ and Flynn LE. 2002. On detection of turnaround and recovery in trend for ozone. Journal of Geophysical Research D107, doi:10.1029/2001JD000500.
- Rigby M, Park S, Saito T, Western LM, Redington AL, Fang X, Henne S, Manning AJ, Prinn RG, Dutton GS, Fraser PJ, Ganesan AL, Hall BD, Harth CM, Kim J,Kim KR, Krummel PB, Lee T, Li S, Liang Q, Lunt MF, Montzka SA, Mühle J, O'Doherty S, Park MK., Reimann S, Salameh PK, Simmonds P, Tunnicliffe RL,Weiss RF, Yokouchi Y.and Young D. 2019. Increase in CFC-11 emissions from eastern China based on atmospheric observations. Nature 569:546-550
- Saito T, Fang X, Stohl A, Yokouchi Y, Zeng J, Fukuyama Y, Mukai H. 2015:. Extraordinary halocarbon emissions initiated by the 2011 Tohoku earthquake. Geophysical Research Letters, 42: 2500-2507.
- Sakazaki T, Fujiwara M, Mitsuda C, Imai K, Manago N, Naito Y, Nakamura T, Akiyoshi H, Kinnison D, Sano T, Suzuki M and Shiotani M. 2013. Diurnal ozone variations in the stratosphere revealed in observations from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on board the International Space Station

(ISS). Journal of Geophysical Research, 118:2991-3006, doi:10.1002/jgrd.50220.

- Sakazaki T, Shiotani M, Suzuki M, Kinnison D, Zawodny JM, McHugh M, and Walker KA. 2015. Sunset-sunrise difference in solar occultation ozone measurements (SAGE II, HALOE, and ACE-FTS) and its relationship to tidal vertical winds. Atmospheric Chemistry and Physics, 15:829-843.
- Sasaki M, Takeshita S, Oyanagi T, Miyake Y, Sakata T. 2002. Increasing trend of biologically active solar ultraviolet-B irradiance in mid-latitude Japan in the 1990s. Optical Engineering 41 (12):3062-3069.
- Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely III, R. R. and Schmidt, A., 2016: Emergence of healing in the Antarctic ozone layer. Science, 10.1126/science.aae0061.
- Solomon, S., R. R. Garcia, and F. Stordal 1985. Transport processes and ozone perturbations, Journal of Geophysical Research., 90, 12981-12989.
- Solomon, S., D. Kinnison, R. Garcia, J. Bandoro, M. Mills, C. Wilka, R. Neely III, A. Schmidt, J.E. Barnes, J.-P. Vernier, and M. Höpfner, 2016a. Monsoon circulations and tropical heterogeneous chlorine chemistry in the stratosphere, Geophysical Research Letters., 43, 12,624–12,633, doi:10.1002/2016GL071778.
- Son SW. et al. 2010. Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. Journal of Geophysical Research. 115.D00M07. doi:10.1029/2010JD014271.
- Son SW, Polvani LM, Waugh DW, Birner T, Akiyoshi H, Garcia RR, Kinniso D, Pawson S, Rozanov E, Shepherd TG, Shibata K. 2008. The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science 320:1486-1489.
- Tanimoto H. 2009. Increase in springtime tropospheric ozone at a mountainous site in Japan for the period 1998-2006. Atmospheric Environment 43:1358-1363.
- Tatarov B, Nakane H, Park ChB, Sugimoto N, Matsui I. 2009. Lidar observation of longterm trends and variations of stratospheric ozone and temperature over Tsukuba, Japan. International Journal of Remote Sensing 30, 15:3951-3960.
- Thompson DWJ, Solomon S. 2002. Interpretation of recent Southern Hemisphere climate change, Science 296:895-899.
- UNEP. 1989. Environmental effects panel report.
- UNEP. 1995. Environmental effects of ozone depletion: 1994 assessment.
- UNEP. 1999. Environmental effects of ozone depletion: 1998 assessment.
- UNEP. 2003. Environmental effects of ozone depletion and its interactions with climate change: 2002 assessment.
- UNEP. 2005. Production and consumption of ozone depleting substances under the Montreal Protocol 1986-2004.
- UNEP. 2007. Environmental effects of ozone depletion and its interactions with climate change: 2006 assessment.
- UNEP. 2011. Environmental effects of ozone depletion and its interactions with climate change: 2010 assessment.
- UNEP. 2012. Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer 9th edition.

- UNEP. 2014. Environmental effects of ozone depletion and its interactions with climate change: 2014 assessment.
- UNEP. 2018. Environmental effects and Interactions of Stratospheric Ozone Depletion, UV Radiation, and Climate Change: 2018 assessment Report.
- U.S. Committee on Extension to the Standard Atmosphere. 1976. US Standard Atmosphere.
- Volkamer R, Jimenez JL, San Martini F, Dzepina K, Zhang Q, Salcedo D, Molina LT, Worsnop DR, Molina MJ. 2006. Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophysical Research Letters 33: L17811.
- Watanabe YW, Yoshinari H, Sakamoto A, Nakano Y, Kasamatsu N, Midorikawa T, Ono T. 2007. Reconstruction of sea surface demethylsulfide in the North Pacific during 1970s to 2000s. Marine Chemistry 103:347-358.
- West SK, Longstrth JD, Munoz BE, Pitcher, HM, Duncan DD. 2005. Model of risk of cortical cataract in the US population with exposure to increased ultraviolet radiation due to strtspheric ozone depletion. American Journal of Epidemiology 162 (11):1080-1088.
- WHO, WMO, UNEP, NIR. 2002. Global solar UV index A practical guide. 28p.
- WMO.1994. Scientific assessment of ozone depletion: 1994. https://www.esrl.noaa.gov/csd/assessments/ozone/1994/.
- WMO. 2007. Scientific assessment of ozone depletion: 2006. http://www.wmo.int/pages/prog/arep/gaw/ozone_2006/ozone_asst_report.html .
- WMO. 2011. Scientific assessment of ozone depletion: 2010 http://ozone.unep.org/Assessment_Panels/SAP/Scientific_Assessment_2010/index.shtml
- WMO. 2014. Scientific assessment of ozone depletion: 2014 https://www.wmo.int/pages/prog/arep/gaw/ozone_2014/ozone_asst_report.html
- WMO. 2014.Scientific assessment of ozone depletion: 2014 Assessment for decisionmakers
- WMO. 2015. Scientific assessment of ozone depletion: 2014 Twenty Questions and answers about the ozone layer:2014 update
- WMO. 2018. Scientific assessment of ozone depletion: 2018
- Yoshinaga E, Kawada A, et al. 2011 Ne-(carboxymethyl)lysine modification of elastin alters its biological properties: Implications for the accumulation of abnormal elastic fibers in actinic elastosis. Journal of Investigative Dermatology 132:315-323,
- Zeng G, Morgenstern O, Braesicke P, Pyle JA. 2010. Impact of stratospheric ozone recovery on tropospheric ozone and its budget. Geophysical Research Letters 37: L09805.
- Zepp RG, Shank GC, Stabenau E, Patterson KW, Cyterski M, Fisher W, Bartels E, Anderson SL. 2008. Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida Keys: Importance of colored dissolved organic matter. Limnology and Oceanography 53:1909-1922.

5. 英略語一覧

		-
英略語	正式名称	訳
AGAGE	Advanced Global Atmospheric Gases	先准的地球相模大気中気休成分網測
AGAGE	Experiment	几些印造环境换入风中风力戰倒
BAPMoN	Background Air Pollution Monitoring	大気バックグラウンド汚染監視網
COM	Network Observicement Objects Madel	小学与伝エデル
CCM	Chemistry Climate Model	化子気候モブル
CDOM	Colored Dissolved Organic Matter	有巴俗仔有機物
CFC		クロロノルオロカーホン
CGER	Center for Global Environmental Research	国立泉境研究所地球泉境研究センター
CIE	Commission Internationale de l'Eclairage	国际职时安良云
CLAES	Cryogenic Limb Array Etalon Spectrometer	大気測定用走 金型 行却 利 行 却 式 地 球 周 縁 赤 外 分 光 計
CPD	Cyclobutane Pyrimijine Dimer	シクロブタン型2量体
CTM	Chemical Transport Model	化学輸送モデル
DLR	Deutschen Zentrum fur Luft- und Raumfahrt	ドイツ航空宇宙センター
DMS	Dimethylsulphide	硫化ジメチル
DU	Dobson Unit	ドブソン単位
ECD	Electron Capture Detector	電子捕獲型検出器
EEAP	Environmental Effects Assessment Panel	環境影響評価パネル
EESC	Equivalent Effective Stratospheric Chlorine	等価実効成層圏塩素
ESRL	Earth System Research Laboratory	地球システム研究所
GAW	Global Atmosphere Watch	全球大気監視
GC	Gas Chromatograph	ガスクロマトグラフ
GHG	Greenhouse Gas	温室効果ガス
GO ₃ OS	Global Ozone Observing System	全球オゾン観測システム
GOME	Global Ozone Monitoring Experiment	全球オゾン監視実験
GWP	Global Warming Potential	地球温暖化係数
HABs	Harmful Algal Blooms	ハームフル・アルガル・ブルーム
HALOE	Halogen Occultation Experiment	ハロゲン気体分子測定センサー
HALS	Hindered Amine Light Stabilizer	高分子光安定剤
HBFC	Hydrobromofluorocarbon	ハイドロブロモフルオロカーボン
HCFC	Hydrochlorofluorocarbon	ハイドロクロロフルオロカーボン
HFC	Hydrofluorocarbon	ハイドロフルオロカーボン
IGY	International Geophysical Year	国際地球観測年
ILAS	Improved Limb Atmospheric Spectrometer	改良型大気周縁赤外分光計
IMG	Interferometric Monitor for Greenhouse Gases	温室効果ガス干渉分光計
IOC	International Ozone Commission	国際オゾン委員会
IPCC	Intergovernmental Panel on Climate Change	気候変動に関する政府間パネル
LIMS	Limb Infrared Monitor of the Stratosphere	地球周縁太陽掩蔽方式成層圈大気観測 放射計
MED	Minimum Erythemal Dose	最少紅斑量
MLS	Microwave Limb Sounder	マイクロ波リム放射サウンダー
MS	Mass Spectrometer	質量分析計
NASA	National Aeronautics and Space Administration	アメリカ航空宇宙局
NDACC	Network for the Detection of Atmospheric Composition Change	大気組成変化検出のためのネットワー ク
NOAA	National Oceanic and Atmospheric	アメリカ海洋大気庁

	Administration	
ODP	Ozone-Depleting Potential	オゾン層破壊係数
ODS	Ozone-Depleting Substance	オゾン層破壊物質
OMI	Ozone Monitoring Instrument	オゾン監視装置
PAR	Photosynthetically Active Radiation	光合成有効放射
PFPE	Perfluoropolyether	パーフルオロポリエーテル
PRTR	Pollutant Release and Transfer Register	化学物質排出移動量届出制度
PSC	Polar Stratospheric Cloud	極成層圏雲
QBO	Quasi biennial Oscillation	準2年周期振動
SAG	Scientific Advisory Group	科学諮問部会
SAGE	Stratospheric Aerosol and Gas Experiment	太陽掩蔽型成層圏エアロゾル・オゾン
		鉛直分布観測センサー
SAP	Scientific Assessment Panel	科学評価パネル
SBUV	Solar and Backscatter Ultraviolet	太陽・後方散乱紫外分光計
SMILES	Superconducting Submillimeter-Wave Limb-	超伝導サブミリ波リム放射サウンダ
004	Emission Sounder	
SOA	Secondary Organic Aerosol	
SRES	Special Report on Emissions Scenarios	
SVOC	Semivolatile Organic Compounds	半揮発性有機化合物
TEAP	Technology and Economic Assessment Panel	技術・経済評価パネル
TOMS	Total Ozone Mapping Spectrometer	オゾン全量マッピング分光計
TOVS	Tiros Operational Vertical Sounder	気温、湿度の鉛直分布測定用放射計
UCI	University of California at Irvine	カリフォルニア大学アーバイン校
UNEP	United Nations Environmental Programme	国連環境計画
VOC	Volatile Organic Compounds	揮発性有機化合物
WHO	World Health Organization	世界保健機関
WMO	World Meteorological Organization	世界気象機関
WOUDC	World Ozone and Ultraviolet Radiation Data	世界オゾン・紫外線資料センター
XPS	Extruded Poly-Styrene	押出法ポリスチレンフォーム